|
|
Enrichment Characteristics of Au, Pd and Pt in Floatation Concentrates of the Yulong Porphyry Cu-Mo Mine: A Reconnaissance Study |
LIU Shen-tai1, HUANG Ming-liang2 |
1. Tibet Yulong Copper Co., Ltd., Qamdo, Tibet 854000, China; 2. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,Guiyang 550081, China |
|
|
Abstract It is of great significance for comprehensive utilization of the associated critical metals to identify the occurrence characteristics of the associated critical metals in porphyry copper deposits. Taking the Yulong super-large porphyry Cu-Mo deposit in Tibet as an example, the PGE and Au of copper concentrate and molybdenum concentrate samples obtained in the beneficiation processes have been studied, and their comprehensive utilization prospect was discussed in this paper. The analytical results show that though PGE and Au grades of ores are very low, those of floatation concentrates are significantly upgraded (97-464 times). Specifically, the maximum Au, Pd and Pt grades of the Cu concentrates (with average Cu grade of 22.4%) are 0.816, 65.0 and 10.69 ng/g, respectively, whereas those of the Mo concentrates are 0.558%, 23.3 ng/g, and 55.5 ng/g, respectively. This research indicates that the PGE and Au are selectively enriched in the floatation concentrates, as Au and Pd are relatively enriched in the Cu concentrate, whereas Pt is relatively concentrated in the Mo concentrate. According to the grades of PGE and Au in floatation concentrates and the Cu and Mo reserves of the Yulong mine, the estimated resources of the associated Pd, Pt, and Au metals are 0.97, 0.15 and 17.0 t, respectively. It is believed that Pd, Pt, and Au in the floatation concentrates of the mine should have good comprehensive recycling and utilization potential.
|
Received: 15 November 2021
|
|
|
|
|
Chang J, Li J W, Selby D, Liu J C, Deng X D. 2017. Geological and chronological constraints on the long-lived Eocene Yulong porphyry Cu-Mo deposit, eastern Tibet: implications for the lifespan of giant porphyry Cu deposits. Economic Geology, 112: 1719-1746 Economou-Eliopoulos M, Eliopoulos D G. 2000. Palladium, platinum and gold concentration in porphyry copper systems of Greece and their genetic significance. Ore Geology Reviews, 16(1-2): 59-70 Eliopoulos D G, Economou-Eliopoulos M. 1991. Platinum-group element and gold contents in the Skouries porphyry copper deposit, Chalkidiki peninsula, Northern Greece. Economic Geology, 86(4): 740-749 Gao J F, Zhou M F, Qi L, Chen W T, Huang X W. 2015. Chalcophile elemental compositions and origin of the Tuwu porphyry Cu deposit, NW China. Ore Geology Reviews, 66: 403-421 Hou Z Q, Ma H W, Zaw K, Zhang Y Q, Wang M J, Wang Z, Pan G T, Tang R L. 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98(1): 125-145 Hou Z Q, Zeng P S, Gao Y F, Du A D, Fu D M. 2006. Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite. Mineralium Deposita, 41(1): 33-45 Huang M L, Bi X W, Hu R Z, Gao J F, Xu L L, Zhu J J, Shang L B. 2019. Geochemistry, in-situ Sr-Nd-Hf-O isotopes, and mineralogical constraints on origin and magmatic-hydrothermal evolution of the Yulong porphyry Cu-Mo deposit, Eastern Tibet. Gondwana Research, 76: 98-114 Huang M L, Gao J F, Bi X W, Xu L L, Zhu J J, Wang D P. 2020. The role of early sulfide saturation in the formation of the Yulong porphyry Cu-Mo deposit: Evidence from mineralogy of sulfide melt inclusions and platinum-group element geochemistry. Ore Geology Reviews, 124: 103644 John D A, Taylor R D. 2016. By-products of porphyry copper and molybdenum deposits: Chapter 7. Rev., Econ., Geol., 18:137-164 Leng C B, Gao J F, Chen W T, Zhang X C, Tian Z D, Guo J H. 2018. Platinum-group elements, zircon Hf-O isotopes, and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system, SW China. Gondwana Research, 62: 163-177 Liang H Y, Campbell I H, Allen C, Sun W D, Liu C Q, Yu H X, Xie Y W, Zhang Y Q. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159 Lu Y J, Kerrich R, Kemp A I S, McCuaig T C, Hou Z Q, Hart C J R, Li Z X, Cawood P A, Bagas L, Yang Z M, Cliff J, Belousova E A, Jourdan F, Evans N J. 2013. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China: Compositional characteristics, sources, and implications for continental collision metallogeny. Economic Geology, 108(7): 1541-1576. doi: 10.2113/econgeo.108.7.1541 Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33 Qi L, Gao J F, Huang X W, Hu J, Zhou M F, Zhong H. 2011. An improved digestion technique for determination of platinum group elements in geological samples. Journal of Analytical Atomic Spectrometry, 26(9): 1900-1904 Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41 Sotnikov V I, Berzina A N, Economou-Eliopoulos M, Eliopoulos D G. 2001. Palladium, platinum and gold distribution in porphyry Cu±Mo deposits of Russia and Mongolia. Ore Geology Reviews, 18(1-2): 95-111 Tarkian M, Koopmann G. 1995. Platinum-group minerals in the Santo Tomas II (Philex) porphyry copper-gold deposit, Luzon Island, Philippines. Mineralium Deposita, 30(1): 39-47 Tarkian M, Stribrny B. 1999. Platinum-group elements in porphyry copper deposits: A reconnaissance study. Mineralogy and Petrology, 65(3): 161-183 Tarkian M, Hünken U, Tokmakchieva M, Bogdanov K. 2003. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Mineralium Deposita, 38(3): 261-281 Wang M F, Gutzmer J, Michalak P P, Guo X N, Xiao F, Wang W, Liu K. 2014. PGE geochemistry of the Fengshan porphyry-skarn Cu-Mo deposit, Hubei Province, Eastern China. Ore Geology Reviews, 56: 1-12 Xu L L, Bi X W, Hu R Z, Zhang X C, Su W C, Qu W J, Hu Z C, Tang Y Y. 2012. Relationships between porphyry Cu-Mo mineralization in the Jinshajiang-Red River metallogenic belt and tectonic activity: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 48: 460-473 苟体忠, 钟宏, 冷成彪, 吴孔文. 2010. 云南中甸地区烂泥塘低温热液型Cu-Au矿床铂族元素(PGE)地球化学特征. 矿物学报, 30(3): 319-323 李晓峰, 毛景文, 张作衡. 2003. 斑岩铜矿中铂族元素的研究现状及展望. 矿床地质, 22(1): 95-98 梁有彬, 李艺. 1997. 中国铂族元素矿床类型和地质特征. 矿产与地质, 11(3): 145-151 马瑞, 黄明亮, 胥磊落, 毕献武, 刘龚. 2020. 扬子克拉通西缘新生代幔源钾质-超钾质岩岩浆氧逸度及其对陆内斑岩成矿作用的启示. 矿物岩石地球化学通报, 39(4): 794-809 唐仁鲤, 罗怀松. 1995. 西藏玉龙斑岩铜(钼)矿带地质. 北京: 地质出版社, 1-320 西藏玉龙铜业股份有限公司. 2009. 西藏自治区江达县玉龙矿区铜矿勘探报告 (内部资料) 杨志明, 侯增谦, 周利敏, 周怿惟. 2020. 中国斑岩铜矿床中的主要关键矿产. 科学通报, 65(33): 3653-3664 张世铭, 肖渊甫, 龚婷婷, 何佳乐, 王强, 张林, 孙建东. 2012. 西藏玉龙成矿带各贡弄、恒星错、马牧普地球化学异常优选评价. 矿物岩石地球化学通报, 31(4): 354-360 |
|
|
|