|
|
Enrichment Mechanism, Occurrence State and Availability of REEsin the Zhijin Phosphorite Deposit, Guizhou, China |
XING Jie-qi1,2,3, ZHANG Ze-yang1,2,3, XIAN Hai-yang1,2, JIANG Yu-hang1,2, LIANG Xiao-liang1,2,3, TAN Wei1,2, NIU He-cai1,2, HE Hong-ping1,2,3, ZHU Jian-xi1,2,3* |
1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,Guangzhou 510640, China; 2. CAS Center for Excellence in Deep Earth Science,Guangzhou 510640, China; 3. University of Chinese Academy of Sciences,Beijing 100049, China |
|
|
Abstract A large amount of marine sedimentary phosphorite is not only the main source of phosphorus, but also a considered potential REEs resource due to the enriched REEs in its majority. In order to better understand the metallogenic regularity, occurrence state and availability of REEs in the REEs-rich phosphorites, in this paper, the Zhijin phosphorites have been studied by using means of XRD, SEM, LA-ICP-MS and TEM. The results show that REEs were mainly enriched in nano-scale apatite particles by diffusion from paleo-seawater and pore water. Low deposition rate and large specific surface area of nano-scale apatite particles are favorable to the enrichment of REEs; The late stage low-temperature, reduced, F-rich hydrothermal fluid had reworked the phosphorite and changed its REEs distribution characteristics, but this was not the main cause of REEs enrichment; TEM data revealed that REEs mainly occurred in the apatite lattice in the form of isomorphism; The characteristics of occurrence state of REEs hosted in apatite at lattice scale had constrained the REEs extraction method of decomposition and destruction of apatite is only the one can be adapted. The REEs can be extracted as associated resources using the acid leaching method, which is an effective way for economic extraction of the REEs.
|
Received: 25 February 2022
|
|
|
|
|
Aly M M, Mohammed N A. 1999. Recovery of lanthanides from Abu Tartur phosphate rock, Egypt. Hydrometallurgy, 52(2): 199-206 Bau M, Balan S, Schmidt K, Koschinsky A. 2010. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth and Planetary Science Letters, 299(3-4): 310-316 Chen J Y, Yang R D, Wei H R, Gao J B. 2013. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region. Journal of Rare Earths, 31(1): 101-112 Cherniak D J. 2000. Rare earth element diffusion in apatite. Geochimica et Cosmochimica Acta, 64(22): 3871-3885 Derry L A, Kaufman A J, Jacobsen S B. 1992. Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329 Derry L A, Brasier M D, Corfield R M, Rozanov A Y, Zhuravlev A Y. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion'. Earth and Planetary Science Letters, 128(3×4): 671-681 Emsbo P, McLaughlin P I, Breit G N, du Bray E A, Koenig A E. 2015. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Research, 27(2): 776-785 Fan H F, Wen H J, Zhu X K, Hu R Z, Tian S H. 2013. Hydrothermal activity during Ediacaran-Cambrian transition: Silicon isotopic evidence. Precambrian Research, 224: 23-35 Fleet M E, Pan Y M. 1995. Site preference of rare earth elements in fluorapatite. American Mineralogist, 80(3-4): 329-335 Fleet M E, Pan Y M. 1997. Site preference of rare earth elements in fluorapatite: Binary(LREE+ HREE)-substituted crystals. American Mineralogist, 82(9-10): 870-877 Gadd M G, Layton-Matthews D, Peter J M. 2016. Non-hydrothermal origin of apatite in SEDEX mineralization and host rocks of the Howard's Pass district, Yukon, Canada. American Mineralogist, 101(5): 1061-1071 Halverson G P, Wade B P, Hurtgen M T, Barovich K M. 2010. Neoproterozoic chemostratigraphy. Precambrian Research, 182(4): 337-350 Hughes J M, Cameron M, Mariano A N. 1991. Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. American Mineralogist, 76(7-8): 1165-1173 Hughes J M, Rakovan J F. 2015. Structurally robust, chemically diverse: Apatite and apatite supergroup minerals. Elements, 11(3): 165-170 Kasemann S A, Pogge von Strandmann P A E, Prave A R, Fallick A E, Elliott T, Hoffmann K H. 2014. Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes. Earth and Planetary Science Letters, 396: 66-77 Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4(8): 535-539 Kaufman A J, Jacobsen S B, Knoll A H. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409-430 Koopman C, Witkamp G J. 2000. Extraction of lanthanides from the phosphoric acid production process to gain a purified gypsum and a valuable lanthanide by-product. Hydrometallurgy, 58(1): 51-60 Krea M, Khalaf H. 2000. Liquid-liquid extraction of uranium and lanthanides from phosphoric acid using a synergistic DOPPA-TOPO mixture. Hydrometallurgy, 58(3): 215-225 Kuznetsov A B, Semikhatov M A, Gorokhov I M. 2018. Strontium isotope stratigraphy: Principles and state of the art. Stratigraphy and Geological Correlation, 26(4): 367-386 Liao J L, Sun X M, Li D F, Sa R N, Lu Y, Lin Z Y, Xu L, Zhan R Z, Pan Y G, Xu H F. 2019. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies. Chemical Geology, 512: 58-68 Liu X Q, Zhang H, Tang Y, Liu Y L. 2020. REE geochemical characteristic of apatite: Implications for ore genesis of the Zhijin phosphorite. Minerals, 10(11): 1012 Martin E E, Scher H D. 2004. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: Bad news and good news. Earth and Planetary Science Letters, 220(1-2): 25-39 Michard A, Albarède F, Michard G, Minster J F, Charlou J L. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature, 303(5920): 795-797 Michard A, Gurriet P, Soudant M, Albarede F. 1985. Nd isotopes in French Phanerozoic shales: External vs. internal aspects of crustal evolution. Geochimica et Cosmochimica Acta, 49(2): 601-610 Mitra A, Elderfield H, Greaves M J. 1994. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Marine Chemistry, 46(3): 217-235 Montan~ez I P, Banner J L, Osleger D A, Borg L E, Bosserman P J. 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, 24(10): 917-920 Ovchinnikova G V, Kuznetsov A B, Vasil'eva I M, Gorokhov I M, Krupenin M T, Gorokhovskii B M, Maslov A V. 2013. Pb-Pb age and Sr isotopic characteristic of the Middle Riphean phosphorite concretions: The Zigaza-Komarovo Formation of the South Urals. Doklady Earth Sciences, 451(2): 798-802 Preston J S, Cole P M, Craig W M, Feather A M, 1996a. The recovery of rare earth oxides from a phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction. Hydrometallurgy, 41(1): 1-19 Preston J S, du Preez A C, Cole P M, Fox M H, 1996b. The recovery of rare earth oxides from a phosphoric acid by-product. Part 3. The separation of the middle and light rare earth fractions and the preparation of pure europium oxide. Hydrometallurgy, 42(2): 131-149 Ptáćek P. 2016. Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications. IntechOpen. doi: 10. 5772/59882 Richter F M, Rowley D B, DePaolo D J. 1992. Sr isotope evolution of seawater: The role of tectonics. Earth and Planetary Science Letters, 109(1-2): 11-23 Rønsbo J G. 1989. Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq Intrusion, South Greenland, and the petrological implications. American Mineralogist, 74(7-8): 896-901 Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley B F, Han J, Shu D G, Li Y. 2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 176(1-4): 46-64 Sawaki Y, Tahata M, Ohno T, Komiya T, Hirata T, Maruyama S, Han J, Shu D G. 2014. The anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in carbonates in the Three Gorges area, South China. Gondwana Research, 25(3): 1070-1089 Shields G A. 2007. A normalised seawater strontium isotope curve: Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth, 2(2): 35-42 Taylor S R, McLennan S M. 1985. The continental crust, its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell Scientific U.S. Geological Survey. 2021. Mineral commodity summaries 2021. Reston, Virginia: U.S. Geological Survey Wei G Y, Ling H F, Shields G A, Chen T, Lechte M, Chen X, Qiu C, Lei H L, Zhu M Y. 2019. Long-term evolution of terrestrial inputs from the Ediacaran to early Cambrian: Clues from Nd isotopes in shallow-marine carbonates, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109367 Xing J Q, Jiang Y H, Xian H Y, Zhang Z Y, Yang Y P, Tan W, Liang X L, Niu H C, He H P, Zhu J X. 2021. Hydrothermal activity during the formation of REY-rich phosphorites in the early Cambrian Gezhongwu Formation, Zhijin, South China: A micro- and nano-scale mineralogical study. Ore Geology Reviews, 136: 104224 Xu H F, Shen Z Z, Konishi H. 2014. Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study. American Mineralogist, 99(11-12): 2196-2202 Xu H F. 2015. Direct observation of Ca-Na ordering and structure polarity in Ca-rich intermediate plagioclase feldspar with incommensurate modulated structure. American Mineralogist, 100(2-3): 510-515 Yang H Y, Zhao Z F, Xia Y, Xiao J F. 2021a. REY enrichment mechanisms in the early Cambrian phosphorite from South China. Sedimentary Geology, 426: 106041 Yang H Y, Xiao J F, Xia Y, Xie Z J, Tan Q P, Xu J B, He S, Wu S W, Liu X Q, Gong X X. 2021b. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions. Geoscience Frontiers, 12(5): 101187 Zhang Z Y, Jiang Y H, Niu H C, Xing J Q, Yan S, Li A, Weng Q, Zhao X C. 2021. Enrichment of rare earth elements in the early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micro-petrography and geochemistry. Ore Geology Reviews, 138: 104342 陈吉艳, 杨瑞东, 张杰. 2010. 贵州织金含稀土磷矿床稀土元素赋存状态研究. 矿物学报, 30(1): 123-129 陈满志, 付勇, 夏勇, 谢卓君, 周克林, 张鹏. 2019. 中国磷块岩型稀土矿资源前景分析. 矿物学报, 39(4): 345-358 陈文祥, 郑松, 严春杰, 梁冬云, 洪秋阳, 李波, 孟庆田, 陈永科, 左佳丽. 2022. 贵州省织金县打麻厂矿区含稀土磷矿中稀土元素赋存规律. 矿物学报, 42(2): 203-212 池汝安, 王淀佐. 2014. 稀土矿物加工. 北京: 科学出版社 段凯波, 王登红, 熊先孝, 连卫, 高鹏, 王英林, 张杨. 2014. 贵州织金磷矿床中离子吸附型稀土的存在及初步定量. 岩矿测试, 33(1): 118-125 范宏瑞, 牛贺才, 李晓春, 杨奎锋, 杨占峰, 王其伟. 2020. 中国内生稀土矿床类型、成矿规律与资源展望. 科学通报, 65(33): 3778-3793 郭海燕, 夏勇, 何珊, 谢卓君, 韦东田, 雷波. 2017. 贵州织金磷块岩型稀土矿地球化学特征. 矿物学报, 37(6): 755-763 金会心, 王华, 李军旗. 2007. 磷矿资源及从磷矿中提取稀土的研究现状. 湿法冶金, 26(4): 179-183 刘世荣, 胡瑞忠, 姚林波, 周国富. 2006. 贵州织金新华磷矿床首次发现独立的稀土矿物. 矿物学报, 26(1): 118 刘世荣, 胡瑞忠, 周国富, 龚国洪, 金志升, 郑文勤. 2008. 织金新华磷矿碎屑磷灰石的矿物成分研究. 矿物学报, 28(3): 244-250 刘喜强, 张辉, 唐勇, 刘云龙. 2019. 贵州织金磷块岩型稀土矿与热液作用: 流体包裹体证据. 矿物学报, 39(4): 403-411 刘意, 陈婷, 郑松, 陈文祥, 严春杰, 王洪权, 周森, 张生, Mudenda C, 陆红军, 杨祥. 2019. 贵州织金低磷层磷矿稀土赋存状态与磷矿浮选工艺研究. 矿物学报, 39(4): 397-402 娄方炬, 顾尚义. 2020. 贵州织金寒武纪磷块岩中磷灰石和白云石稀土元素的LA-ICP-MS分析: 对沉积环境和成岩过程的指示意义. 中国稀土学报, 38(2): 225-239 毛铁, 杨瑞东, 高军波, 毛家仁. 2015. 贵州织金寒武系磷矿沉积特征及灯影组古喀斯特面控矿特征研究. 地质学报, 89(12): 2374-2388 聂登攀. 2018. 贵州织金富稀土磷矿稀土赋存状态及在酸/热解过程中行为研究. 博士学位论文. 贵阳: 贵州大学 施春华. 2005. 磷矿的形成与Rodinia超大陆裂解、生物爆发的关系——以贵州瓮安、开阳、织金磷矿床为例. 博士学位论文. 贵阳: 中国科学院研究生院(地球化学研究所) 谭靖, 黄苑龄. 2015. 贵州某地中低品位磷矿工艺矿物学研究. 有色金属文摘, 30(4): 13, 15 王建蕊, 张杰. 2011. 织金含稀土白云质磷块岩物质组成及稀土元素特征. 中国非金属矿工业导刊, (1): 25-27, 59 王莹, 熊先孝, 东野脉兴, 李代荣, 屈云燕, 刘秋颖, 霍延安. (2021-11-04). 中国磷矿资源预测模型及找矿远景分析. 中国地质: 1-25. http://kns.cnki.net/kcms/detail/11.1167.P.20211103.1709.002.html 吴盛炜, 夏勇, 谭亲平, 许建斌, 谢卓君, 杨海英, 何珊. 2019. 贵州织金磷块岩型稀土矿含矿岩系REE地球化学特征与稀土富集. 矿物学报, 39(4): 359-370 吴素彬, 聂登攀, 吴泽宏, 耿家锐. 2012. 织金含稀土中低品位磷矿物相特征研究. 工业设计, (1): 98-99 谢宏, 朱立军. 2012. 贵州寒武纪梅树村期磷块岩稀土元素存在形式研究. 中国矿业, 21(6): 65-70 谢俊. 2020. 贵州织金磷块岩中稀土类质同象机理研究. 博士学位论文. 贵阳: 贵州大学 许建斌, 肖加飞, 杨海英, 夏勇, 吴盛炜, 谢卓君. 2019. 贵州织金磷块岩稀土元素富集特征与制约因素: 以摩天冲矿段2204号钻孔为例. 矿物学报, 39(4): 371-379 叶明富, 王苗苗, 杨刚, 张文兴, 陈国昌, 许立信. 2020. 织金磷矿酸浸液分离富集稀土研究. 稀有金属与硬质合金, 48(3): 1-4, 17 张杰, 朱雷, 张覃. 2006. 贵州织金含稀土磷块岩矿床生物成矿基本特征. 稀土, (1): 93-94 张杰, 倪元, 王建蕊. 2010. 贵州织金含稀土磷块岩中胶磷矿工艺矿物学特征. 矿物学报, 30(S1): 75-76 张生, 杨祥, 刘冲, 张必武, 陆红军, 陈文祥. 2020. 贵州织金低品位磷矿浮选工艺研究. 化工矿物与加工, 49(3): 29-31 张文兴, 郑松, 陈文祥, 张周位, 黄苑龄, 叶太平, 杨刚, 吴海琴. 2019. 贵州织金硅质磷块岩型稀土矿稀土浸出规律. 矿物学报, 39(4): 389-396 张彦斌, 龚美菱, 李华. 2007. 贵州织金地区稀土磷块岩矿床中稀土元素赋存状态. 地球科学与环境学报, 29(4): 362-368 张跃跃. 2015. 泥盆纪什邡式磷矿稀土元素特征及综合利用研究. 硕士学位论文. 绵阳: 西南科技大学 赵丽君, 聂登攀, 何灏, 王振杰, 薛安, 吴素彬. 2014. 盐酸浸出中低品位胶磷矿中稀土的研究. 有色金属(冶炼部分), (4): 45-47 郑国栋, 王琨, 陈其慎, 张艳飞, 邢佳韵, 龙涛, 董延涛, 倪晋鹏. 2021. 世界稀土产业格局变化与中国稀土产业面临的问题. 地球学报, 42(2): 265-272 朱日祥, 李献华, 侯先光, 潘永信, 王非, 邓成龙, 贺怀宇. 2009. 梅树村剖面离子探针锆石U-Pb年代学: 对前寒武纪-寒武纪界线的年代制约. 中国科学: 地球科学, 39(8): 1105-1111 |
|
|
|