|
|
Geochemical Characteristics and Petrogenesis of the REE-barren Huangyangshan Alkaline Intrusion in the South Qinling, Central China and the Comparative Study to the REE Mineralized Intrusions: Implication for the Regional REE Mineralization |
ZHA Zhi-hui1,2, CHEN Wei1,2*, ZHANG Wei1, MA Rong-lin1,2 |
1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,Guiyang 550081, China; 2. University of Chinese Academy of Sciences,Beijing 100049, China |
|
|
Abstract The key factors controlling obviously different degrees of REE mineralization (fertile and barren) among a series of Silurian alkaline intrusions distributed in the South Qinling orogenic belt have long been poorly understood. In this paper, we have conducted a combined petrological, geochemical, and isotopic investigation of the REE-barren Huangyangshan alkaline pluton, in order to make a comprehensive comparison with REE-mineralized intrusions (the Miaoya and Shaxiongdong) and then to explore the reason why there is obvious difference among those intrusions in terms of the REE mineralization. Our results show that rocks (syenite and alkaline granite) of the Huangyangshan intrusion, which was formed in 438.8±3.7 Ma, have peralkaline, shoshonitic and high-K calc-alkaline characteristics. They have right-declined (LREE-rich) chondrite-normalized REE distribution patterns with negative Eu anomalies, obvious depletion of Eu, Ba, and Sr but weak HSFEs anomalies in the primitive mantle-normalized trace-elemental spider diagrams, and have high Zr and Nb contents, high Ga/Al ratios, and high zircon saturation temperatures (~830 ℃). They are similar to the typical A-type granite. The Huangyangshan alkaline rocks have εNd(t) values of 2.31~3.43 which are similar to those of the contemporaneous mantle-derived mafic rocks in the region. In combination with related geochemical features of these rocks, it is constrained that their parental magmas could be derived from partial melting of juvenile crustal mafic rocks. They are different from the contemporaneous REE-mineralized syenite which was derived from enrich mantle (EM I). The comparison of barren and mineralized intrusions show that they were derived from different magma sources. Thus, it is believed that the different magma sources of different alkaline intrusions in the South Qinling orogenic belt could be key factors resulting in their different geochemical characteristics and different properties of the REE mineralization.
|
Received: 01 March 2022
|
|
|
|
|
Abdallsamed M I M, Wu Y B, Zhang W X, Zhou G Y. 2018. Paleozoic peralkaline A-type magmatism of the Tongbai Orogen, Central China: Petrogenesis and tectonic implications. Lithos, 322: 268-280 Ahmed H A, Ma C Q, Wang L X, Palinkaš L A, Girei M B, Zhu Y X, Habib M. 2018. Petrogenesis and tectonic implications of Peralkaline A-type granites and syenites from the Suizhou-Zaoyang region, central China. Journal of Earth Science, 29(5): 1181-1202 Belousova E, Griffin W, O'Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29 Chen W, Lu J, Jiang S Y, Ying Y C, Liu Y S. 2018. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chemical Geology, 494: 80-95 Çimen O, Kuebler C, Monaco B, Simonetti S S, Corcoran L, Chen W, Simonetti A. 2018. Boron, carbon, oxygen and radiogenic isotope investigation of carbonatite from the Miaoya complex, Central China: Evidences for late-stage REE hydrothermal event and mantle source heterogeneity. Lithos, 322: 225-237 Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 Cui H, Zhong R C, Xie Y L, Yuan X Y, Liu W H, Brugger J, Yu C. 2020. Forming sulfate- and REE-rich fluids in the presence of quartz. Geology, 48(2): 145-148 Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644 Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 Hoskin P W O. 2000. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64(11): 1905-1923 Hou Z Q, Liu Y, Tian S H, Yang Z M, Xie Y L. 2015. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments. Scientific Reports, 5(1): 10231 Hu Z C, Zhang W, Liu Y S, Gao S, Li M, Zong K Q, Chen H H, Hu S H. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152-1157 Karsli O, Ketenci M, Uysal I, Dokuz A, Aydin F, Chen B, Kandemir R, Wijbrans J. 2011. Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: Potential parental melts and geodynamic implications. Lithos, 127(1-2): 354-372 Kemp A I S, Wormald R J, Whitehouse M J, Price R C. 2005. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia. Geology, 33(10): 797-800 King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371-391 Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 Lu J, Chen W, Ying Y C, Jiang S Y, Zhao K D. 2021. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis. Lithos, 398-399: 106276 Ludwig K R. 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 70 Ma C Q, She Z B, Xu P, Wang L Y. 2005. Silurian A-type granitoids in the southern margin of the Tongbai-Dabieshan: Evidence from SHRIMP zircon geochronology and geochemistry. Science in China: Earth Sciences, 48(8): 1134-1145 Ma R L, Chen W T, Zhang W, Chen Y W. 2021. Hydrothermal upgrading as an important tool for the REE mineralization in the Miaoya carbonatite-syenite complex, Central China. American Mineralogist, 106(10): 1690-1703 Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3-4): 183-196 Middlemost E A K. 1985. Magmas and magmatic rocks. London: Longman, 1-266 Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532 Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931 Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263 Su J H, Zhao X F, Li X C, Hu W, Chen M, Xiong Y L. 2019. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite. Ore Geology Reviews, 113: 103101 Su J H, Zhao X F, Li X C, Hu W, Chen W, Slezak P. 2022. Unmixing of REE-Nb enriched carbonatites after incremental fractionation of alkaline magmas in the Shaxiongdong complex, Central China. Lithos, 416-417: 106651 Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345 Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3-4): 279-281 Wan Y, Wang X L, Chou I M, Li X C. 2021. Role of sulfate in the transport and enrichment of REE in hydrothermal systems. Earth and Planetary Science Letters, 569: 117068 Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304 Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 Woolley A R, Kjarsgaard B A. 2008. Carbonatite occurrences of the world: Map and database. Geological Survey of Canada, 1-22 Wu B, Hu Y Q, Bonnetti C, Xu C, Wang R C, Zhang Z S, Li Z Y, Yin R. 2021. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization. Ore Geology Reviews, 132: 104059 Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173 Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428 Xie Y L, Hou Z Q, Yin S P, Dominy S C, Xu J H, Tian S H, Xu W Y. 2009. Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China. Ore Geology Reviews, 36(1-3): 90-105 Xu C, Campbell I H, Allen C M, Chen Y J, Huang Z L, Qi L, Zhang G S, Yan Z F. 2008. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 105(1-2): 118-128 Xu C, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos, 118(1-2): 145-155 Xu C, Chakhmouradian A R, Taylor R N, Kynicky J, Li W B, Song W L, Fletcher I R. 2014. Origin of carbonatites in the south Qinling orogen: Implications for crustal recycling and timing of collision between the south and North China blocks. Geochimica et Cosmochimica Acta, 143: 189-206 Xu C, Kynicky J, Chakhmouradian A R, Li X H, Song W L. 2015. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos, 227: 107-121 Yang Y N, Wang X C, Li Q L, Li X H. 2016. Integrated in situ U-Pb age and Hf-O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ18O magmas in the South China Block. Precambrian Research, 273: 151-164 Ying Y C, Chen W, Lu J, Jiang S Y, Yang Y H. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290-291: 159-171 Ying Y C, Chen W, Simonetti A, Jiang S Y, Zhao K D. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochimica et Cosmochimica Acta, 280: 340-359 Zhang D X, Liu Y, Pan J Q, Dai T G, Bayless R C. 2019a. Mineralogical and geochemical characteristics of the Miaoya REE Prospect, Qinling Orogenic Belt, China: Insights from Sr-Nd-C-O isotopes and LA-ICP-MS mineral chemistry. Ore Geology Reviews, 110: 102932 Zhang W, Chen W T, Gao J F, Chen H K, Li J H. 2019b. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: In-situ U-Th-Pb dating of bastnäsite and monazite. Mineralium Deposita, 54(8): 1265-1280 Zhu J, Wang L X, Peng S G, Peng L H, Wu C X, Qiu X F. 2017. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, Central China. Geological Journal, 52(6): 938-954 Zong K Q, Klemd R, Yuan Y, He Z Y, Guo J L, Shi X L, Liu Y S, Hu Z C, Zhang Z M. 2017. The assembly of Rodinia: The correlation of Early Neoproterozoic (Ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48 陈虹, 田蜜, 武国利, 胡健民. 2014. 南秦岭构造带内早古生代碱基性岩浆活动: 古特提斯洋裂解的证据. 地质论评, 60(6): 1437-1452 李石. 1988. 花山寨英碱正长岩地球化学特征及岩石成因探讨. 湖北地质, (2): 23-28 李石. 1990. 湖北观子山硬玉钙霞正长岩初步研究. 岩石矿物学杂志, 9(1): 22-30 李石. 1991a. 南秦岭武当-桐柏地区碱性岩研究. 中国区域地质, (1): 40-53 李石. 1991b. 鄂北地区碱性岩的时代及成因. 岩石学报, (3): 27-36 龙井山. 2016. 陕南紫阳基性岩墙和正长斑岩脉的地球化学特征及地质意义. 硕士学位论文. 西安: 长安大学 王刚. 2014. 北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用. 博士学位论文. 北京: 中国地质大学 向忠金, 闫全人, 宋博, 王宗起. 2016. 北大巴山超基性、基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义. 地质学报, 90(5): 896-916 杨斌虎, 张成立, 李雷. 2011. 东秦岭陡岭杂岩花岗岩的Sr-Nd-Pb同位素特征及其地质意义.地质通报, 30(Z1): 439-447 杨小鹏, 王长兵, 李文庆. 2019. 大兴安岭北段索图罕地区碱长花岗岩成因及形成构造背景. 吉林大学学报(地球科学版), 49(5): 1338-1349 应元灿. 2018. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程. 硕士学位论文. 武汉: 中国地质大学 张成立, 高山, 张国伟, 柳小明, 于在平. 2002. 南秦岭早古生代碱性岩墙群的地球化学及其地质意义. 中国科学: 地球科学, 32(10): 819-829 张成立, 高山, 袁洪林, 张国伟, 晏云翔, 罗静兰, 罗金海. 2007. 南秦岭早古生代地幔性质: 来自超镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据. 中国科学: 地球科学, 37(7): 857-865 张欣. 2010. 南秦岭紫阳-镇巴地区基性侵入体动力学机制及地质意义讨论. 硕士学位论文. 西安: 长安大学 朱煜翔. 2019. 东秦岭新元古代方城碱性杂岩体的成因及Nb-Ta富集机制. 硕士学位论文. 武汉: 中国地质大学 |
|
|
|