|
|
Shallow Response to the Deep REE Mineralization in the Maoniuping Giant REE Deposit in the Eastern Tibet Plateau |
XU De-ru1,2, JIAO Qian-qian3*, CHEN Gen-wen2*, YANG Jian-xing2, SHAN Qiang2, WANG Fei-rong4, ZHOU Hong-wu4 |
1. State Key Laboratory for Nuclear Resources and Environment, East China University of Technology,Nanchang 330013, China; 2. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,Guangzhou 510640, China; 3. College of Land and Resource Engineering, Kunming University of Science and Technology,Kunming 650093, China; 4. Coalfield Geological Survey Institute of Jiangxi Province,Nanchang 330013, China |
|
|
Abstract The Maoniuping REE deposit, located in the Mianning-Dechang REE metallogenic belt in the eastern Tibetan Plateau, is ranked the third one of carbonatite-type REE deposits in the world. However, the REE resources in the shallow level are rapidly decreased because of mining in many years. Therefore, it is urgently needed to carry out the exploration of REE resources in the depth and periphery of the deposit in order to ensure the REE resource security supply. Based on the data integration of the detailed geological survey, the mineral components and geochemical characteristics of surface far-field alteration minerals, and geophysical characteristics for geological bodies in the depth, a three-dimensional geological model forthe deposit has been constructed to explore the shollow response of the REE mineralization in the deep part of the deposit. The results suggest that the strike-slip faults near the major deep faults, the alkaline intrusion and carbonatite complex with high REE concentration, the wall rock alteration of fenitization and carbonation, the calcite enriched in trace elements of Ba, Na and Sr, and the linear distributed low resistivity anomalies shown by the CSAMT survey could be the shallow indications for the REE mineralization in the deep part of the deposit. There is relatively good prospecting potential for the REE resource in the deep part of the deposit with depths vary from 500 m to 1000 m.
|
Received: 08 March 2022
|
|
|
|
|
Chakhmouradian A R, Cooper M A, Reguir E P, Moore M A. 2017. Carbocernaite from Bear Lodge, Wyoming: Crystal chemistry, paragenesis, and rare-earth fractionation on a microscale. American Mineralogist, 102(6): 1340-1352 Chi G X, Xu D R, Xue C J, Li Z H, Ledru P, Deng T, Wang Y M, Song H. 2022. Hydrodynamic links between shallow and deep mineralization systems and implications for deep mineral exploration. Acta Geologica Sinica (English Edition), 96(1): 1-25 Foster M D. 1960. Interpretation of the composition of lithium micas. Washington: United States Government Printing Office Hou Z Q, Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2:24 Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Y Z. 1997. Nomenclature of amphiboles; report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35(1): 219-246 Ling X X, Li Q L, Liu Y, Yang Y H, Liu Y, Tang G Q, Li X H. 2016. In situ SIMS Th-Pb dating of bastnaesite: Constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits. Journal of Analytical Atomic Spectrometry, 31(8): 1680-1687 Liu Y, Hou Z. Q, Tian S H, Zhang Q C, Zhu Z M, Liu J H. 2015. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting. Ore Geology Reviews, 64: 554-568 Liu Y, Hou Z Q. 2017. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. Journal of Asian Earth Sciences, 137: 35-79 Liu Y, Chakhmouradian A R, Hou Z, Song W, Kynický J, 2019. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions, and trace-element geochemistry. Mineralium Deposita, 54(6): 701-718 Morimoto N. 1988. Nomenclature of pyroxenes. Mineralogy and Petrology, 39 (1): 55-76 Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sauders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, 42(1): 313-345 Wang D H, Yang J M, Yan S H, Xu J, Chen Y C, Pu G P, Luo Y N. 2001. A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, China: Geology and geochemistry. Resource Geology, 51(3): 177-188 Xu C, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos, 118(1-2): 145-155 Xu C, Campbell I H, Kynicky J, Allen C M, Chen Y J, Huang Z L, Qi L. 2008. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos, 106(1-2): 12-24 Xu C, Taylor RN, Li WB, Kynicky J, Chakhmouradian AR, Song WL, 2012. Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China. Journal of Asian Earth Science, 57(5):76-89 Xie Y L, Li Y X, Hou Z Q, Cooke D R, Danyushevsky L, Dominy S C, Yin S P. 2015. A model for carbonatite hosted REE mineralisation— the Mianning-Dechang REE belt, Western Sichuan Province, China. Ore Geology Reviews,70: 595-612 Zheng X, Liu Y. 2019. Mechanisms of element precipitation in carbonatite-related rare-earth element deposits: Evidence from fluid inclusions in the Maoniuping deposit, Sichuan province, southwestern China. Ore Geology Reviews, 107: 218-238 侯增谦, 田世洪, 谢玉玲, 袁忠信, 杨竹森, 尹淑苹, 费红彩, 邹天人, 李小渝, 杨志明. 2008. 川西冕宁-德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型. 矿床地质, 27(2): 145-176 焦骞骞,张胜印,常华诚,许德如,陈根文,龚玉蓉. 2021. 四川牦牛坪稀土矿床深部构造与成矿作用的地球物理新证据. 中国稀土学报. http://kns.cnki.net/kcms/detail/11.2365.tg.20210623.1535.002.html 靳是琴, 李鸿超. 1984. 成因矿物学概论(上). 长春:吉林大学出版社,79-119 刘琰. 2017. 川西牦牛坪超大型稀土矿床稀土元素二次富集过程. 北京:中国地质科学院地质研究所,1-25 刘琰, 陈超, 舒小超, 郭东旭, 李自静, 赵海璇, 贾玉衡. 2017. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式——以大陆槽REE矿床为例. 岩石学报, 33(7): 1978-2000 骆耀南, 俞如龙, 侯立玮,赖绍民, 付德明, 陈茂勋, 付小方, 饶荣标, 周世枢. 1998. 龙门山-锦屏山陆内造山带. 成都: 四川科学技术出版社, 1-171 孙明全, 罗其标, 张博飞, 范勇, 杨柳, 邓涛, 张卫华, 龚玥. 2017. 四川省稀土成矿规律及资源评价. 北京: 科学出版社, 28-46 田世洪, 侯增谦, 杨竹森, 陈文, 杨志明, 袁忠信, 谢玉玲, 费红彩, 尹淑苹, 刘英超, 李政, 李小渝. 2008. 川西冕宁-德昌REE成矿带成矿年代学研究: 热液系统维系时限和构造控矿模型约束. 矿床地质, 27(2): 177-187 王璇, 杨林, 邓军, 李华健, 于华之, 董超一. 2018. 北衙金矿多期热液成矿作用识别: 来自地质、岩相学、流体包裹体和H-O-S同位素证据. 岩石学报, 34(5): 1299-1311 杨建星. 2020. 川西地区牦牛坪稀土矿床浅表特征及成岩成矿作用研究. 硕士学位论文. 广州: 中国科学院大学(中国科学院广州地球化学研究所) 袁忠信, 施泽民, 白鸽, 吴澄宇, 池汝安, 李小渝. 1995. 四川冕宁牦牛坪稀土矿床. 北京: 地震出版社, 1-150 |
|
|
|