|
|
Geochemical Characteristics of Trace Elements and Sulfur Isotopes of Sulfides from the Chenjiaba Cu-Pb-Zn Polymetallic Deposit, Lveyang County, Shaanxi Province |
DING Kun1, WANG Rui-ting1,2, QIAN Zhuang-zhi1,3, LUAN Yan1,3, ZHANG Tian-yun4, FENG Yan-qing1, LI Yong-qin4 |
1. School of Earth Sciences and Resources, Chang'an University, Xi'an 710054 China;
2. Shaanxi Mineral Resources Comprehensive Utilization Engineering Technology Research Center, Xi'an 710054, China;
3. Key Laboratory of Western Mineral Resources and Geological Engineering of Ministry Education, Xi'an 710054, China;
4. No. 711 Geological Team, Northwest Bureau of Geological Exploration for Nonferrous Metals, Hanzhong Shaanxi 723000, China |
|
|
Abstract In order to explore the source of ore-forming materials and the genesis of the Chenjiaba Cu-Pb-Zn polymetallic deposit in the Mian-Lve-Yang ore-concentrated district, a geochemical study on REE, trace elements, and S isotopes of pyrite, chalcopyrite and sphalerite of the deposit has been carried out by using the ICP-MS and EA-IRMS instruments in this paper. The results show that the ore-forming elements, such as Cu, Pb, Zn, Ag, and Au etc. in pyrite are enriched comparing with the abundances of trace elements in the upper crust of the earth. It might reflect that the ore-forming elements were enriched in the ore-forming fluid. The Y/Ho ratios of pyrite (varying from 5.5 to 42) are similar to those of the quartz keratophyre, indicating the involvement of magmatic hydrothermal fluid in the mineralization. In addition, the pyrite has Co contents of 54.8×10-6-165.02×10-6 and Co/Ni ratios ranging from 1.29 to 5.95, indicating that the deposit was formed in a medium to low temperature environment by the early volcanic exhalative mineralization and late hydrothermal mineralization. Sulfur isotopes of sulfides vary from 4.88‰ to 8.90‰, indicating that sulfur could be sourced from the mixture of the brine sulfate and sea water sulfate.
|
|
|
|
|
|
Maslennikov V V,Maslennikova S P,Large R R, Danyushevsky L V.2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (southern Urals,Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS).Economic Geology,104(8):1111-1141
|
|
OhmotoH,Rye R O. 1979.Isotopes of sulfur and carbon.In Barnes H L,(ed). Geochemistry of hydrothermal ore deposits.New York:Wiley, 509-567
|
|
Reich M,Deditius A,Chryssoulis S,Li J W,Ma C Q,Parada M A,Barra F, Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:ASIMS/EMPA trace element study. Geochimica et Cosmochimica Acta,104:42-62
|
|
陈俊,王鹤年. 2004.地球化学.北京:科学出版社
|
|
丁振举,姚书振,周宗桂,伍刚.1998.陕西略阳铜厂铜矿成矿时代及地质意义. 西安工程学院学报, 20(3): 24-27
|
|
丁坤,王瑞廷,钱壮志,栾燕,张天运,郑崔勇,冯延清. 2017. 陕西省陈家坝铜铅锌多金属矿床地质地球化学特征及矿床成因探讨. 地质与勘探,53(3): 436-444
|
|
匡文龙,向世超,肖文舟,陈伟,杨绍祥,余沛然,陈年生. 2015. 湘西北地区铅锌矿床成矿地质特征及矿床成因研究. 矿床地质, 34(5): 1072-1082
|
|
Revan M K,Genc Y,Maslennikov V V,Maslennikova S P,Large R R, Danyushevsky L V. 2014. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey).Ore Geology Reviews, 63: 129-149
|
|
Thomas H V,Large R R,Bull S W,Maslennikov V,Berry R F,Fraser R,Froud S, Moye R.2011,Pyrite and pyrrhotite textures and composition in sediments,laminated quartz veins,and reefs at Bendigo gold mine,Australia:Insights for ore genesis.Economic Geology,106(1):1-31
|
|
Raymond O L. 1996. Pyrite composition and ore genesis in the Prince Lyell copper deposit,Mt Lyell mineral field, western Tasmania, Australia. Ore Geology Reviews,10(3-6): 231-250
|
|
Ye L,Cook N J,Ciobanu C L,Liu Y P,Zhang Q,Liu T G,Gao W,Yang Y L, Danyushevskiy L.2011.Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study.Ore Geology Reviews,39(4):188-217
|
|
韩润生,金世昌,刘丛强,李元,马德云. 2000b. 陕西勉略阳区铜厂矿田矿床(化)类型及其特征. 地质与勘探, 36(4): 11-15
|
|
韩吟文,马振东,张宏飞. 2003.地球化学. 北京:地质出版社
|
|
梅建明. 2000. 浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究. 现代地质,14(1): 51-55
|
|
盛继福,李岩,范书义. 1999. 大兴安岭中段铜多金属矿床矿物微量元素研究.矿床地质, 18(2): 153-160
|
|
田浩浩,张寿庭,曹华文,韩江伟,吕鹏瑞,张云辉. 2015. 豫西赤土店铅锌矿床闪锌矿微量元素地球化学特征. 矿物岩石地球化学通报,34(2): 334-342
|
|
王瑞廷,旺军谊,李福让,王东亮,张梦平. 2004. 勉-略-宁多金属矿集区铜厂-徐家坝铜矿带地质地球化学特征. 矿物岩石地球化学通报,23(S1):69-71
|
|
西北有色地质勘查局七一一总队. 2016. 陕西省略阳县陈家坝普查项目2016年工作总结报告. 1-102
|
|
张政,唐菊兴,林彬,郑文宝,林鑫,唐晓倩,高一鸣,王艺云,杨欢欢,黄建. 2016. 藏南扎西康矿床闪锌矿微量元素地球化学特征及地质意义. 矿物岩石地球化学通报, 35(6):1203-1216,1289
|
|
袁见齐,朱上庆,翟裕生. 1985. 矿床学.北京:地质出版社
|
|
周小栋,宋世明,郭坤一,陈国光,陈丹丹,龚娜,曾勇. 2015. 宁芜南门头铜矿碳、氧、硫、铅同位素地球化学特征及其地质意义. 矿物岩石地球化学通报,34(5): 960-967
|
|
Douville E,Bienvenu P Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627-643
|
|
曹毅,杜杨松,庞振山,任春雷,杜轶伦,肖福权,周贵斌,陈林杰. 2016. 安徽铜陵冬瓜山矿床矿石硫化物环带及地质意义. 岩石学报, 32(2):334-350
|
|
李厚民,沈远超,毛景文,刘铁兵,朱和平. 2004. 石英、黄铁矿中群体包裹体微量元素研究—以胶东焦家式金矿床为例. 地质科学,39(3): 320-328
|
|
叶霖,高伟,杨玉龙,刘铁庚.2012.云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成.岩石学报,28(5):1362-1372
|
|
Shannon R D. 1976.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751-767
|
|
韩润生,朱大岗,马德云,马更生,刘伟. 2000a. 陕西铜厂矿田控矿断裂带显微构造特征. 地质地球化学, 28(1): 28-33
|
|
王瑞廷,王东生,代军治,任涛,李福让,王长安,许小峰,陈荔湘,邢义征,张云峰,李剑斌,李建华,高菊生,王涛,王民良. 2012. 秦岭造山带陕西段主要矿集区铅锌银铜金矿综合勘查技术研究. 北京: 地质出版社
|
|
Zartman R E, Doe B R.1981.Plumbotectonics the model. Tectonophysics, 75(1-2):135-162
|
|
李福让,王瑞廷,高晓宏,陈荔湘. 2009. 陕西省略阳县徐家沟铜矿床成矿地质特征及控矿因素. 地质学报, 83(11): 1752-1761
|
|
叶霖,刘铁庚. 1997. 陕南勉宁略地区铜厂铜矿包裹体地球化学特征研究. 矿物学报, 17(2): 194-199
|
|
华仁民,李晓峰,张开平,邱德同,杨风根. 2002. 江西金山金矿成矿过程流体作用地球化学特征. 南京大学学报(自然科学版),38(3): 408-417
|
|
叶霖,刘铁庚,邵树勋. 1997. 陕南铜厂矿区钠长岩和闪长岩的同位素年龄讨论. 矿物岩石地球化学通报, 16(2): 114-117
|
|
|
|