|
|
The Distribution of Phosphorous in Various Types of Pegmatites from Altai, Xinjiang and Its Implication |
LV Zheng-hang1, ZHANG Hui1, TANG Yong1, ZHAO Jing-yu2, LIU Yun-long1, GUO Liu1 |
1. Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. Suzhou University, Suzhou Anhui 234000, China |
|
|
Abstract The Xinjiang Altai is an important area of rare metal resources which are going to be exhausted because of the long-term exploitation and the limitation of traditional geophysical methods for prospecting rare metal ore deposits. Thus, it is urgently required to innovate exploration method and make breakthrough in exploration of rare metal resources. Previous studies suggest that prealuminous rocks with mineralization of rare metal are commonly characterized with high P content. The analyses of P2O5 contents in alkaline feldspars from four types of pegmatites by using EPMA and the statistics on P contents in pegmatites have been conducted in this work, in order to verify the prospecting indicators proposed by previous studies and outline prospecting target. The results demonstrate that the barren pegmatites are characterized with low P contents (P2O5<0.1%), whereas the mineralized pegmatites are characterized with high P contents (P2O5 ≥ 0.1%). Therefore, this work supports that the P2O5>0.1% of alkaline feldspar is an effective indicator for prospecting rare metal ore deposits of pegmatite. It is noticed that P contents of the Permian mineralized pegmatites are generally lower than those of the Triassic mineralized pegmatites, we suggest that the Permian pegmatites have relatively low potential for finding rare metal resources. As the Triassic pegmatites in the Halong-Qinghe subzone commonly have high P contents, it is suggested that the rare metal exploration should be concentrated in a target area from the Keketuohai to the upstream of the Kalaeerqisi river in the Xinjiang Altai.
|
|
|
|
|
|
Bea F, Pereira M D, Corretgé L G, Fershtater G B. 1994. Differentiation of strongly peraluminous, perphosphorus granites: the pedrobernardo pluton, central Spain. Geochimica et Cosmochimica Acta, 58(12): 2609-2627
|
|
Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J, Long X P, Wu F Y. 2011b. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 42(5): 949-968
|
|
erný P. 1991. Rare-element granite pegmatites. Part I: anatomy and internal evolution of pegmatite deposits. Geoscience Canada Reprint Series, 18(2): 49-67
|
|
London D. 1992. Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminous granites, pegmatites, and rhyolites. American Mineralogist, 77(1-2): 126-145
|
|
Long X P, Sun M, Yuan C, Xiao W J, Cai K D. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208(3-4): 88-100
|
|
Long X P, Sun M, Yuan C, Xiao W J, Lin S F, Wu F Y, Xia X P, Cai K D. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, TC5015, DOI:10.1029/2007TC002128
|
|
Raimbault L, Burol, L. 1998. The Richemont rhyolite dike, massif central, France: a subvocanic equivalent of rare-metal granite. The Canadian Mineralogist, 36: 265-282
|
|
Wang T, Tong Y, Jahn B M, Zou T R, Wang Y B, Hong D W, Han B F. 2007. SHRIMP U-Pb Zircon geochronology of the Altai No.3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32(1-2): 325-336
|
|
黄永胜, 张辉, 吕正航, 唐勇, 唐宏. 2016. 新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究: 来自流体包裹体的指示. 矿物学报, 36(4): 571-585
|
|
刘文政, 张辉, 唐红峰, 唐勇, 吕正航. 2015. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义. 地球化学, 44(2): 145-154
|
|
Frýda J, Breiter K. 1995. Alkali feldspars as a main phosphorus reservoirs in rare-metal granites: Three examples from the Bohemian Massif (Czech Republic). Terra Nova, 7(3): 315-320
|
|
Liu F, Zhang Z X, Li Q, Zhang C, Li C. 2014. New precise timing constraint for the Keketuohai No.3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209-219
|
|
London D, erný P, Loomis, J L, Pan J J. 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. The Canadian Mineralogist, 28(4): 771-786
|
|
Lv Z H, Zhang H, Tang Y, Guan S J. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374-391
|
|
MaCdonald M A, Clarke D B. 1985. The petrology, geochemistry, and economic potential of the Musquodoboit batholith, Nova Scotia. Canadian Journal of Earth Sciences, 22(11): 1633-1642
|
|
Rao C, Hatert F, Wang R C, Gu X P, Dal B F, Dong C W. 2015. Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No.31 pegmatite, Fujian Province, southeastern China. Mineralogical Magazine, 79(5): 1195-1202
|
|
Wang T, Jahn B M, Kovach V P, Tong Y, Hong D W, Han B F. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372
|
|
Yuan C, Sun M, Xiao W J, Li X H, Chen H L, Lin S F, Xia X P, Long X P. 2007. Accretionary orogenesis of the of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39
|
|
Zhang C, Liu L F, Santosh M, Luo Q, Zhang X. 2016b. Sediment recycling and crustal growth in the Central Asian Orogenic Belt: evidence from Sr-Nd-Hf isotopes and trace elements in granitoids of the Chinese Altay. Gondwana Research, 47: 142-160
|
|
Zhang X, Zhang H, Ma, Z L, Tang Y, Lv Z H, Zhao J Y, Liu Y L. 2016a. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155
|
|
秦克章, 申茂德, 唐冬梅, 郭正林, 周起凤, 王春龙, 郭旭吉, 田野, 丁建刚. 2013. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代. 新疆地质, 31(S1): 1-7
|
|
任宝琴, 张辉, 唐勇, 吕正航. 2011. 阿尔泰造山带伟晶岩年代学及其地质意义. 矿物学报, 31(3): 587-596
|
|
唐勇, 张辉, 刘丛强, 饶冰. 2008b. 富P过铝质岩浆体系的研究现状及存在的问题. 矿物学报, 28(1): 35-42
|
|
Liu Y L, Zhang H, Tang Y, Zhang X, Lv Z H, Zhao J Y. 2017. Petrogenesis and tectonic setting of the Middle Permian Atype granites in Altay, Northwestern China: evidences from geochronological, geochemical, and Hf isotopic studies. Geological Journal, doi: 10.1002/gj.2910
|
|
Rao C, Wang R C, Hatert F, Gu X P, Ottolini L, Hu H, Dong C W, Dal B F, Baijot M. 2014. Strontiohurlbutite, SrBe2(P2O4) 2, a new mineral from Nanping No.31 pegmatite, Fujian Province, Southeastern China. American Mineralogist, 99(2-3): 494-499
|
|
Zhang J J, Wang T, Tong Y, Zhang Z C, Song P, Zhang L, Huang H, Guo L, Hou Z Q. 2017. Tracking deep ancient crustal components by xenocrystic/inherited zircons of Palaeozoic felsic igneous rocks from the Altai-East Junggar terrane and adjacent regions, western Central Asian Orogenic Belt and its tectonic significance. International Geology Review. DOI: 10.1080/00206 814.2017.1308841
|
|
唐勇, 张辉, 刘丛强. 2008a. 富磷过铝质岩浆岩的地球化学特征及成矿效应. 矿物岩石地球化学通报, 27(S1): 145-146
|
|
Broska I, Williams C T, Uher P, Konený P, Leichmann J. 2004. The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: The role of apatite and P-bearing feldspar. Chemical Geology, 205(1-2): 1-15
|
|
London D, Morgan G B V I, Babb H A, Loomis J L. 1993. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O2-SiO2-P2O5-H2O at 200 MPa (H2O). Contributions to Mineralogy and Petrology, 113(4): 450-465
|
|
Sun M, Yuan C, Xiao W J, Long X P, Xia X P, Zhao G C, Lin S F, Wu F Y, Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 247(3-4): 352-383
|
|
Zhu Y F, Zeng Y S, Gu L B. 2006. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China. Journal of Asian Earth Sciences, 27(1): 61-77
|
|
王涛, 童英, 李舢, 张建军, 史兴俊, 李锦轶, 韩宝福, 洪大卫. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义: 以中国阿尔泰为例. 岩石矿物学杂质, 29(6): 595-618
|
|
Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J, Long X P, Wu F Y. 2011a. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 127(1-2): 261-281
|
|
London D. 1998. Phosphorus-rich peraluminous granites. Acta Universitatis Carolinae Geologica, 42: 64-68
|
|
Tang Y, Zhang H, Su G Z. 2013. Phosphorus in alkali feldspars as an indicator for prospecting for pegmatite-type rare-metal ore deposits in Altay, NW China. Geochemistry: Exploration, Environment, Analysis, 13(1): 3-10
|
|
陈剑锋. 2011. 阿尔泰3号伟晶岩脉缓倾斜部分岩浆的形成与演化. 硕士学位论文. 贵阳: 中国科学院地球化学研究所, 1-87
|
|
邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社
|
|
erný P, Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005-2026
|
|
Long X P, Yuan C, Sun, M, Xiao W J, Zhao G C, Wang Y J, Cai K D, Xia X P, Xie L W. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic Flysch sequence in the Chinese Altai, NW China: new constraints on depositional age, provenance and tectonic evolution. Tectonophysics, 480(1): 213-231
|
|
Windley B F, Kröener A, Guo J H, Qu G S, Li Y Y, Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology, 110(6): 719-737
|
|
马占龙, 张辉, 唐勇, 吕正航, 张鑫, 赵景宇. 2015. 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究. 地球化学, 44(1): 9-26
|
|
Zhou Q F, Qin K Z, Tang D M, Wang C L, Sakyi P A. 2016. LA-ICP-MS U-Pb zircon, columbite-tantalite and40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geological Magazine, 1-22
|
|
王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社, 1-493
|
|
|
|