|
|
Characteristics and Their Geological Significances of Spinel Minerals of Kimberlite in Mengyin, Shandong Province |
YANG Zhi-jun1,2, HUANG Shan-shan1, CHEN Yao-ming1, LEI Xue-ying1, LI Xiao-xiao1, ZENG Xuan1 |
1. College of Earth Science and Engineering Sun Yat-sen University, Guangzhou 510275, China;
2. Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey, Guangzhou 510275, China |
|
|
Abstract Spinel minerals, as a group of accessory minerals in kimberlite, were formed throughout the whole evolution process of kimberlite. The morphological and compositional characteristics of spinel minerals can be effectively used to decipher the evolution process of kimberlite magma. In order to figure out characteristics of spinel minerals of kimberlite in Mengyin, Shandong Province, those samples were observed and analyzed by using optic microscope, electron microprobe analysis (EMPA), scanning electron microscope (SEM) and LA-ICP-MS for their appearance characteristics and mineral compositions. The results show that spinel minerals in matrix of the Mengyin kimberlite generally are 20~60μm sized euhedral crystals with zoning texture. They are thought to be primary spinel. From the core to the edge of the zoning spinel minerals, the Cr contents are gradually decreased, whereas the Ti contents and Fe2+/(Fe2++Mg) values are gradually increased. Based on their morphologies, there are enhedral-subhedral crystals and atoll grains of spinel minerals. The various zonings of the spinel could be caused by various factors including the thermal interference of the environment, variations of the pressure and melt composition. These difference characteristics of spinel minerals in the Mengyin kimberlite indicate that the kimberlite had experienced a long term complex evolution process.
|
|
|
|
|
|
Barnes S J, Roeder P L. 2001. The range of spinel compositions in Terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12): 2279-2302
|
|
Chakhmouradian A R, Mitchell R H. 2001. Three compositional varieties of perovskite from kimberlites of the Lac de Gras field (Northwest Territories, Canada). Mineralogical Magazine, 65(1): 133-148
|
|
Edwards D, Rock N M S, Taylor W R.1992. Mineralogy and Petrology of the Aries Diamondiferous Kimberlite Pipe, Central Kimberley Block, Western Australia. Journal of Petrology, 33(5):1157-1191
|
|
Evans B W, Frost B R. 1975. Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochimica et Cosmochimica Acta, 39(6-7): 959-972
|
|
Field M, Stiefenhofer J. Robey J. Kurszlaukis S. 2008. Kimberlite-hosted diamond deposits of southern Africa: A review. Ore Geology Reviews, 34(1-2): 33-75
|
|
Haggerty S E. 1975. The chemistry and genesis of opaque minerals in kimberlites. Physics and Chemistry of the Earth, 9: 295-307
|
|
Irvine T N. 1965. Chromian spinel as a petrogenetic indicator: Part 1. Theory. Canadian Journal of Earth Sciences, 2(6): 648-672
|
|
Mitchell R H. 1986. Kimberlites: Mineralogy, geochemistry, and petrology. New York: Plenum, 442
|
|
Pasteris J D. 1983. Spinel zonation in the De Beers kimberlite: South Africa: Possible role of phlogopite. The Canadian Mineralogist, 21(1): 41-58
|
|
Gurney J J, Zweistra P. 1995. The interpretation of the major element compositions of mantle minerals in diamond exploration. Journal of Geochemical Exploration, 53(1-3): 293-309
|
|
Kaur G, Mitchell R H. 2013. Mineralogy of the P2-West 'Kimberlite’, Wajrakarur kimberlite field, Andhra Pradesh, India: Kimberlite or lamproite? Mineralogical Magazine, 77(8): 3175-3196
|
|
Malkovets V G, Griffin W L, O'Reilly S Y, Wood B J. 2007. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology, 35(4): 339-342
|
|
Pasteris J D. 1980. Opaque oxide phases of the DeBeers pipe kimberlite (Kimberly, South Africa) and their petrologic significance. Doctoral Thesis. New Haven, CT: Yale University
|
|
Roeder P L, Schulze D J. 2008. Crystallization of groundmass spinel in kimberlite. Journal of Petrology, 49(8): 1473-1495
|
|
Schulze D J. 2001. Origins of chromian and aluminous spinel macrocrysts from kimberlites in Southern Africa. The Canadian Mineralogist, 39(2): 361-376
|
|
Stachel T, Harris J W. 2008. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geology Reviews, 34(1-2): 5-32
|
|
Stixrude L, Lithgow-Bertelloni C. 2005. Thermodynamics of mantle minerals—I. Physical properties. Geophysical Journal International, 162(2): 610-632
|
|
迟广成, 伍月. 2014. 辽宁瓦房店金伯利岩中尖晶石族矿物种类划分及指示意义. 岩矿测试, 33(3): 353-358
|
|
迟广成, 伍月, 胡建飞. 2014. 山东蒙阴金伯利岩中尖晶石族矿物特征及种类划分. 矿物学报, 34(3): 369-373
|
|
董振信. 1991. 金伯利岩中铬尖晶石的特征及与其它岩类中铬尖晶石之对比. 地质论评, 37(6): 508-518
|
|
贾晓丹. 2014. 辽宁瓦房店金伯利岩中铬尖晶石的矿物学特征及其指示意义. 硕士学位论文. 北京: 中国地质大学(北京), 60
|
|
路凤香,赵磊,邓晋福,郑建平.1995. 华北地台金伯利岩岩浆活动时代讨论.岩石学报,11(4):365-374
|
|
王濮. 1982. 系统矿物学. 北京: 地质出版社
|
|
山东省第七地质队.1979.山东省蒙阴县常马庄金刚石原生矿带普查报告
|
|
赵田, 朱光, 向必伟, 林少泽, 顾承串. 2016. 郯庐断裂带起源机制的探讨. 矿物岩石地球化学通报, 35(6): 1120-1140
|
|
赵秀英. 1982. 辽宁某地金伯利岩中铬铁矿与金刚石的关系. 矿物学报, (1): 21-29, 81
|
|
Chalapathi Rao N V, Dongre A N. 2009. Mineralogy and geochemistry of kimberlites NK-2 and KK-6, Narayanpet kimberlite field, eastern Dharwar craton, southern India: Evidence for a transitional kimberlite signature. The Canadian Mineralogist, 47(5): 1117-1135
|
|
Chalapathi Rao N V, Lehmann B, Mainkar D, Panwar B K. 2012. Diamond-facies chrome spinel from the Tokapal kimberlite, Indrāvati basin, central India and its petrological significance. Mineralogy and Petrology, 105(3-4): 121-133
|
|
Malkovets V G, Rezvukhin D I, Belousova E A, Griffin W L, Sharygin I S, Tretiakova I G, Gibsher A A, O'Reilly S Y, Kuzmin D V, Litasov K D, Logvinova A M, Pokhilenko N P, Sobolev N V. 2016. Cr-rich rutile: A powerful tool for diamond exploration. Lithos, 265: 304-311
|
|
Mitchell R H. 2008. Petrology of hypabyssal kimberlites: Relevance to primary magma compositions. Journal of Volcanology and Geothermal Research,174(1-3),1-8
|
|
Tompkins L A, Haggerty S E. 1985. Groundmass oxide minerals in the Koidu kimberlite dikes, Sierra Leone, West Africa. Contributions to Mineralogy and Petrology, 91(3): 245-263
|
|
Yaxley G M, Berry A J, Rosenthal A, Woodland A B, Paterson D. 2017. Redox preconditioning deep cratonic lithosphere for kimberlite genesis-evidence from the central Slave Craton. Scientific Reports, 7: 30
|
|
杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 2016. 金伯利岩演化过程及金刚石含矿性评价的研究进展. 地球科学进展, 31(7): 700-707
|
|
张培强. 2006. 山东金伯利岩岩管成因. 博士学位论文. 北京: 中国地质大学(北京), 142
|
|
Sarkar C, Storey C D, Hawkesworth C J. 2013. Detailed protracted crystallization history of perovskite in Orapa Kimberlite. In: Proceedings of the 10th International Kimberlite Conference. New Delhi: Springer, 211-224
|
|
居易, 朱仁智, 倪培, 王国光, 丁俊英, 康宁, 朱安冬, 黄宝, 周华. 2016. 瓦房店30号岩管金伯利岩中尖晶石成分特征及其意义. 矿物岩石地球化学通报, 35(6): 1217-1225
|
|
|
|