|
|
Genetic Mineralogy Analysis on the Mineralization Process of Skarn Iron Deposit in Han-Xing Area, Southern Taihang Mountains |
ZHANG Ju-quan1, WANG Ji-zhong2, LI Sheng-rong3, SHEN Jun-feng3, LU Jing1 |
1. Hebei GEO University, Resource College, Shijiazhuang 050031, China;
2. Hebei GEO University, School of Gemology and Materials Technology, Shijiazhuang 050031, China;
3. School of Earth Sciences and Resources, China University of Geosciences Beijing, Beijing 100029, China |
|
|
Abstract In this study, genetic mineralogy analysis has been used to constrain the origin of skarn type iron deposits in the Han-Xing area. Composition, structure and age of identified minerals in the magmatic-hydrothermal system were used to discuss the controlling factors of Fe enrichment in ore-forming process, and establish the metallogenetic model of such iron deposits. Results showed that there are two types of magma evolution processes in this area, forming two individual metallogenic systems. In the hornblende diorite-diorite metallogenic system, high-Mg diorite and Fe-rich ore-forming fluid were formed by fractional crystallization of magnesium-rich amphibole at high oxygen fugacity condition. But in diorite-monzonite metallogenic system, 2.5 Ga iron-rich metamorphic basement was assimilated into the magma, and provided countable mineralization material. Reaction between oxidized hydrothermal fluids and Ca-rich carbonate would form Fe-rich skarn, such as andradite, consuming large amounts of Fe so that the fulids would be Fe poor and be unfavorable in Fe mineralization. When ore-forming fluids reacted with Mg-rich carbonate, Fe-poor skarn, such as diopside, would not significant lower Fe in fluids. Such fluids would remain Fe-rich and form iron deposits.
|
|
|
|
|
|
Li S R, Santosh M, Zhang H F, Shen J F, Dong G C, Wang J Z, Zhang J Q. 2013. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Research, 23(1): 141-160
|
|
Qian Q, Hermann J. 2010. Formation of high-Mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths. Journal of Petrology, 51(7): 1381-1416
|
|
Shen J F, Li S R, Santosh M, Dong G C, Wang Y J, Liu H M, Peng Z D, Zhang Z Y. 2015. Zircon U-Pb geochronology of the basement rocks and dioritic intrusion associated with the Fushan skarn iron deposit, southern Taihang Mountains, China. Journal of Asian Earth Sciences, 113: 1132-1142
|
|
陈光远. 1978a. 富铁矿地球化学问题. 宁夏地质, (11):54-56
|
|
陈光远. 1978b. 有关铁矿理论和实践几个问题的探讨. 地质科技. (4):1-10
|
|
华北地质科学研究所, 河北地质学院. 1976. 太行山等地区邯邢式铁矿成矿规律和找矿方向. 天津: 华北地质科学研究所, 1-154
|
|
刘英俊, 李兆麟, 赵梅芳, 蒋浩深. 1982. 华北邯邢式富铁矿形成条件的实验研究. 南京大学学报(自然科学版), 18(4): 917-927
|
|
牛利锋, 张宏福. 2005. 南太行山地区中基性侵入岩中角闪石的矿物学及其成因. 大地构造与成矿学, 29(2): 269-277
|
|
牛树银, 陈路, 许传诗. 1994. 太行山区地壳演化及成矿规律. 北京: 地震出版社, 181-183
|
|
Chen B, Tian W, Jahn B M, Chen Z C. 2008. Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China Craton: Evidence for hybridization between mantle-derived magmas and crustal components. Lithos, 102(1-2): 118-137
|
|
Shen J F, Santosh M, Li S R, Zhang H F, Yin N, Dong G C, Wang Y J, Ma G G, Yu H J. 2013. The Beiminghe skarn iron deposit, eastern China: Geochronology, isotope geochemistry and implications for the destruction of the North China Craton. Lithos, 156-159: 218-229
|
|
Zhang J Q, Li S R, Santosh M, Wang J Z, Li Q. 2015. Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process. Ore Geology Reviews, 64: 200-214
|
|
Zhu B, Zhang H F, Zhao X M, He Y S. 2016. Iron isotope fractionation during skarn-type alteration: Implications for metal source in the Han-Xing iron skarn deposit. Ore Geology Reviews, 74: 139-150
|
|
蔡本俊, 李席珍, 魏寿彭, 崔云昊, 何金水. 1987. 邯邢地区中奥陶统蒸发岩特征及其对内生铁(硫)矿床的控制.中国地质科学院地质力学研究所所刊, (10): 1-84
|
|
沈保丰, 陆松年, 于恩泽, 单莲芳, 郁建华. 1977. 某区磁铁矿床中钠质交代作用的特征及其找矿意义. 地质科学, 12(3): 263-274
|
|
肖玲玲, 蒋宗胜, 王国栋, 万渝生, 王涛, 吴春明. 2011. 赞皇前寒武纪变质杂岩区变质反应结构与变质作用p-T-t轨迹. 岩石学报, 27(4): 980-1002
|
|
张聚全, 李胜荣, 王吉中, 白明, 卢静, 魏宏飞, 聂潇, 刘海明. 2013. 冀南邯邢地区白涧和西石门夕卡岩型铁矿磁铁矿成因矿物学研究. 地学前缘, 20(3): 76-87
|
|
真允庆, 马丽华, 李中生. 1984. 鞍山式铁矿与邯邢式铁矿的可能联系. 地球科学—武汉地质学院学报, (4): 71-80
|
|
郑建民, 毛景文, 陈懋弘, 李广栋, 班长勇. 2007. 冀南邯郸-邢台地区夕卡岩铁矿的地质特征及成矿模式. 地质通报, 26(2): 150-154
|
|
周凌, 陈斌. 2005. 南太行洪山正长岩体的成因和意义: 锆石SHRIMP年代学、化学成分和Sr-Nd同位素特征. 自然科学进展, 15(11): 1357-1365
|
|
Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Y Z. 1997. Nomenclature of amphiboles report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. The Canadian Mineralogist, 35: 219-246
|
|
陈光远. 1976. 富铁的成矿与找矿. 地质科技, (4):15-23
|
|
沈保丰, 翟安民, 李增慧, 汪玉麟. 1981. 冀南邯邢式铁矿成矿地质条件分析. 地质学报, 55(2): 127-138
|
|
Ridolfi F, Renzulli A, Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45-66
|
|
陈永健, 苏尚国, 何永胜, 李曙光, 侯建光, 冯少憧, 曹珂. 2014. 河北武安西石门铁矿床Fe同位素特征及其成矿指示意义. 岩石学报, 30(11): 3443-3454
|
|
许晓峰. 1986. 从交代蚀变矿物标型特征研究冀南夕卡岩型铁矿床的形成. 地质找矿论丛, 1(1): 50-56
|
|
蔡本俊, 李席珍, 魏寿彭, 崔云星, 何金水. 1983. 中奥陶统蒸发岩对邯邢式铁(硫)矿床的控制. 矿物岩石, (4): 31-44
|
|
彭头平, 王岳军, 范蔚茗, 郭锋, 彭冰霞. 2004. 南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究. 岩石学报, 20(5): 1253-1262
|
|
许文良, 杨德彬, 裴福萍, 于洋. 2009. 太行山南段符山高镁闪长岩的成因:拆沉陆壳物质熔融的熔体与地幔橄榄岩反应的结果. 岩石学报, 25(8): 1947-1961
|
|
|
|