Ages and Geochemical Characteristics of the Sangangshan Monzogranite Intrusion in Guangdong Province and Their Geological Significances
CHEN Chang-sheng1,2, XIE Cai-fu2, FEI Guang-chun1
1. College of Earth Sciences, Chengdu University of Technology,Chengdu 610059, China; 2. College of Earth Sciences, Donghua University of Technology,Nanchang 330000, China
Abstract:In order to explore the chronological and geochemical characteristics of the Sangangshan monzogranite intrusion, the LA-ICP-MS zircon U-Pb isotopic dating and analysis of major and trece elements and REE of the monzogranite have been conducted in this paper. The dating results show that the medium-coarse sized biotite monzogranite and fine porphyritic biotite monzogranite have ages of (96.2±1.3) Ma and (99.5±1.2) Ma, respectively, indicating that they were formed in the late Cretaceous. Their chemical compositions are characterized with rich silicon, K>Na, meta-aluminum to weakly peraluminous, low calcium, low magnesium, and relatively poor iron,. with obvious significant enrichment of large ionophile elements (Rb, Th, U), strong depletion of Ba, Sr, Ti, and P, and slight depletion of Nb. They have relatively low to medium REE contents, with obvious fractionation of LREE and HREE, steeply right-diclined "V" type REE distribution patterns, medium to weak negative Eu anomalies (δEu values of 0.64~0.77). The medium-coarse biotite monogranite has relatively high REE contents. Petrological and geochemical characteristics show that they belong to meta-aluminium to weakly peraluminium I type granite with the crust-mantle mixed origin. The tectonic setting discrimination diagrams show that the Sangangshan intrusion was formed in the volcanic arc granite environment. It is inferred that it's formation could be related to the arc magmatism caused by subduction of Pacific plate. Therefore, it is believed that the Sangangshan intrusion could be formed in the extensional tectonic environment caused by the Pacific plate subduction and trailing edge tension.
Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73 Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3-4): 197-213 Belousova E, Griffin W, O′Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 Dostal J, Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218 Gilder S A, Gill J, Coe R S, Zhao X X, Liu Z W, Wang G X, Yuan K R, Liu W L, Kuang G D, Wu H R. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154 Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282 Hsü K J, Li J L, Chen H H, Wang Q C, Sun S, Şengör A M C. 1990. Tectonics of South China: Key to understanding West Pacific geology. Tectonophysics, 183(1-4): 9-39 Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182 Liang Q, Jing H, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513 Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635-643 Maruyama S, Send T. 1986. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 127(3-4): 305-329 McKenzie D. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 95(1-2): 53-72 Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532 Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrolog, 25(4): 956-983 Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263 Shu L S, Deng P, Wang B, Tan Z Z, Yu X Q, Sun Y. 2004. Lithology, kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China. Science in China Series D: Earth Sciences, 47(8): 673-688 Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sauders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 313-345 Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304 Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 Xie Y X, Ma L Y, Zhao G C, Xie C F, Han Y G, Li J H, Liu Q, Yao J L, Zhang Y Y, Lu Y F. 2020. Origin of the Heping granodiorite pluton: Implications for syn-convergent extension and asthenosphere upwelling accompanying the early Paleozoic orogeny in South China. Gondwana Research, 85: 149-168 Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33 蔡明海, 彭松柏, 孟祥金, 刘国庆. 2001. 桂东-粤西地区中生代成矿规律及动力学机制探讨. 华南地质与矿产, (2): 35-42 陈培荣, 华仁民, 章邦桐, 陆建军, 范春方. 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景. 中国科学:地球科学, 32(4): 279-289 陈振宇, 黄国龙, 朱捌, 陈郑辉, 黄凡, 赵正, 田泽瑾. 2014. 南岭地区花岗岩型铀矿的特征及其成矿专属性. 大地构造与成矿学, 38(2): 264-275 范蔚茗, 王岳军, 郭锋, 彭头平. 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169 胡艳华, 钱俊锋, 褚先尧, 徐岩, 顾明光, 李建峰. 2012. 华南加里东运动研究综述及其性质初探1. 科技通报, 28(11): 42-48, 71 华仁民, 陈培荣, 张文兰, 姚军明, 林锦富, 张展适, 顾晟彦. 2005. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 11(3): 291-304 李三忠, 索艳慧, 李玺瑶, 王永明, 曹现志, 王鹏程, 郭玲莉, 于胜尧, 兰浩圆, 李少俊, 赵淑娟, 周在征, 张臻, 张国伟. 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应. 科学通报, 63(16): 1550-1593 李武显, 周新民. 1999. 中国东南部晚中生代俯冲带探索. 高校地质学报, 5(2): 164-169 李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526 丘增旺, 王核, 闫庆贺, 李莎莎, 汪礼明, 卜安, 魏小鹏, 李沛, 慕生禄. 2017. 广东陶锡湖锡多金属矿床花岗斑岩锆石U-Pb年代学、地球化学、Hf同位素组成及其地质意义. 大地构造与成矿学, 41(3): 516-532 舒良树, 周新民, 邓平, 余心起. 2006. 南岭构造带的基本地质特征. 地质论评, 52(2): 251-265 舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053 孙涛, 周新民, 陈培荣, 李惠民, 周红英, 王志成, 沈渭洲. 2003. 南岭东段中生代强过铝花岗岩成因及其大地构造意义. 中国科学: 地球科学, 33(12): 1209-1218 王德滋, 沈渭洲. 2003. 中国东南部花岗岩成因与地壳演化. 地学前缘, 10(3): 209-220 王登红, 陈毓川, 陈郑辉, 刘善宝, 许建祥, 张家菁, 曾载淋, 陈富文, 李华芹, 郭春丽. 2007. 南岭地区矿产资源形势分析和找矿方向研究. 地质学报, 81(7): 882-890 谢昊, 梁新权, 王策, 梁细荣, 董超阁. 2020. 广东白石嶂钼矿区花岗岩U-Pb年代学及其地球化学特征. 地球化学, 49(5): 479-493 姚巍, 陈珲, 马明杰. 2016. 粤北腊树下岩体地球化学特征及形成时代. 世界核地质科学, 33(4): 196-203 袁永盛, 张宏辉, 娄元林. 2020. 粤西连阳岩体南段LA-ICP-MS锆石U-Pb测年、岩石成因及构造环境. 地质通报, 39(4): 523-537 张小葛, 谢财富, 张昭, 陈凯, 南争路, 袁永盛, 张宏辉, 靳国栋, 彭苹, 朱玉雯. 2020-8-7(网络首发). 广东洽水地区花岗岩体LA-ICP-MS锆石U-Pb年代学: 对华南内陆~100 Ma构造环境的制约. 中国地质 赵希林, 毛建仁, 刘凯, 叶海敏, 王开虎. 2013. 赣南与钨锡矿化有关的九曲二云母花岗岩的形成时代及其岩石成因初探. 地质论评, 59(1): 83-96 中国地质调查局. 2017. 广东1: 50 000洽水圩、横石圩幅区域地质调查报告(内部资料) 周新民. 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社, 1-691