Mineral Geochemistry of Biotites from the Mineralized Intrusive Bodies in the Late Mesozoic Porphyry Cu-Mo Deposits, Northern Great Xing'an Range and Its Geological Implications
MENG Fan-bo1, DENG Chang-zhou2*, FENG Yu-zhou3, TIAN Zhen-dong1, LI Cheng-lu4, GONG Lin3, CHEN Xu-sheng1, LYU Feng-tong1
1. Qiqihar Institute of Geological Exploration of Heilongjiang Province, Qiqihar Heilongjiang 161006, China;
2. Institute of Geochemistry, Chinese Academy of Sciences,Guiyang 550081, China;
3. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,Guangzhou 510640, China;
4. Heilongjiang Institute of Natural Resource Survey,Harbin 150036, China
Abstract:Compositions of biotites from mineralized intrusive bodies of the late Mesozoic Huoluotai and Baoquan Cu-Mo deposits in the northern Great Xing'an range were measured here by using the electron probe micro-analyzer with the aim to understand the metallogenic information of these deposits. The results show that the biotites from the Huoluotai and Baoquan deposits belong to the magnesium biotites. The biotite-bearing mineralized porphyry bodies are products of mixtures of crust and mantle melts formed in the active continental margin setting. The calculation results by using the biotite thermobarometer show that crystallization temperatures of biotites of the Huoluotai and Baoquan deposits range from 738 to 761 ℃ and 725 to 749 ℃, respectively. Their solidification pressures are 67-95 MPa and 102-141 MPa, respectively, corresponding to the depths of 2.55-3.60 km and 3.85-5.33 km, respectively. Oxygen fugacities of the studied biotites are near the HM buffer, indicating the relatively high oxygen fugacity environments for those magmas. Moderate lg(fHF/fHCl), lg(fH2O/fHCl) and lg(fH2O/fHF) values of the biotites indicate that those magmas have favorable conditions for the simultaneous Cu and Mo mineralization. Biotite geochemical characteristics indicate that the northern Great Xing'an range has beneficial tectonic and magmatic conditions for the formation of late Mesozoic porphyry Cu-Mo deposits.
孟凡波, 邓昌州, 冯雨周, 田振东, 李成禄, 龚林, 陈旭升, 吕凤彤. 大兴安岭北段晚中生代斑岩铜钼矿床成矿岩体黑云母地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2021, 40(4): 914-924.
MENG Fan-bo, DENG Chang-zhou, FENG Yu-zhou, TIAN Zhen-dong, LI Cheng-lu, GONG Lin, CHEN Xu-sheng, LYU Feng-tong. Mineral Geochemistry of Biotites from the Mineralized Intrusive Bodies in the Late Mesozoic Porphyry Cu-Mo Deposits, Northern Great Xing'an Range and Its Geological Implications. Acta Metallurgica Sinica, 2021, 40(4): 914-924.
Abdel-Rahman A F M. 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35(2): 525-541
Bi X W, Hu R Z, Hanley J J, Mungall J E, Peng J T, Shang L B, Wu K X, Yan S A, Li H L, Hu X Y. 2009. Crystallisation conditions (T, P, fO2) from mineral chemistry of Cu- and Au- mineralised alkaline intrusions in the Red River-Jinshajiang alkaline igneous belt, western Yunnan Province, China. Mineralogy and Petrology, 96(1): 43-58
Boomeri M, Nakashima K, Lentz D R. 2009. The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103(1): 17-29
Candela P A, Holland H D. 1984. The partitioning of Copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta, 48(2): 373-380
David R W, Hans P E. 1965. Stability of biotite: experiment, theory, and application. American Mineralogist, 50(9): 1228-1272
Deng C Z, Sun D Y, Han J S, Li G H, Feng Y Z, Xiao B, Li R C, Shi H L, Xu G Z, Yang D G. 2019a. Ages and petrogenesis of the Late Mesozoic igneous rocks associated with the Xiaokele porphyry Cu-Mo deposit, NE China and their geodynamic implications. Ore Geology Reviews, 107: 417-433
Deng C Z, Sun D Y, Han J S, Chen H Y, Li G H, Xiao B, Li R C, Feng Y Z, Li C L, Lu S. 2019b. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China. Lithos, 326-327: 341-357
Deng C Z, Sun D Y, Li G H, Lu S, Tang Z Y, Gou J, Yang Y J. 2019c. Early Cretaceous volcanic rocks in the Great Xing'an Range: Late effect of a flat-slab subduction. Journal of Geodynamics, 124: 38-51
Deng C Z, Sun G Y, Rong Y M, Sun R Y, Sun D Y, Lehmann B, Yin R S. 2021. Recycling of mercury from the atmosphere-ocean system into volcanic-arc-associated epithermal gold systems. Geology, 49(3): 309-313
Feng Y Z, Xiao B, Li R C, Deng C Z, Han J S, Wu C, Li G H, Shi H L, Lai C. 2019. Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu-Mo deposit in the Great Xing'an Range, NE China: Metallogenic and exploration implications. Ore Geology Reviews, 112: 103062
Feng Y Z, Chen H Y, Xiao B, Li R C, Deng C Z, Han J S, Li G H, Shi H L, Lai C. 2020. Late Mesozoic magmatism at Xiaokelehe Cu-Mo deposit in Great Xing'an Range, NE China: Geodynamic and metallogenic implications. Lithos, 374-375: 105713
Foster M D. 1960. Interpretation of the composition of trioctahedral micas. Washington, DC: United States Government Printing Office, 11-49
Henry D J, Guidotti C V, Thomson J A. 2015. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3): 316-328
Henry D J, Guidotti C V. 2015. Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications. American Mineralogist, 87(4): 375-382
Jin C, Gao X Y, Chen W T, Zhao T P. 2018. Magmatic-hydrothermal evolution of the Donggou porphyry Mo deposit at the southern margin of the North China Craton: Evidence from chemistry of biotite. Ore Geology Reviews, 92: 84-96
Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109(2): 139-150
Li C L, Deng C Z, Li S R, Yuan M W, Alam M, Liu B S, Zhao Z H, Li W L, Yang Y J. 2021. Geochronology and genesis of the newly discovered Mengdehe orogenic-type Au deposit in the Xing'an-Mongolia Orogenic Belt, NE China. Ore Geology Reviews, 133: 104083
Li X Y, Zhang C, Behrens H, Holtz F. 2020. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos, 356-357: 105371
Li Y, Xu W L, Tang J, Pei F P, Wang F, Sun C Y. 2018. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos, 304-307: 57-73
Munoz J L. 1984. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 13(1): 469-493
Munoz J L. 1992. Calculation of HF and HCl fugacities from biotite compositions: revised equations. Geological Society of American Abstract Programs, 24: A221
Rieder M, Cavazzini G, D'yakonov Y S, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval' P W, Müller G, Neiva A M R, Radoslovich E W, Robert J L, Sassi F P, Takeda H, Weiss Z, Wones D R. 1998. Nomenclature of the micas. Clays and Clay Minerals, 46(5): 586-595
Selby D, Nesbitt B E. 2000. Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171(1-2): 77-93
Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41
Sun Y G, Li B L, Ding Q F, Qu Y, Wang C K, Wang L L, Xu Q L. 2020a. Mineralization age and hydrothermal evolution of the Fukeshan Cu (Mo) deposit in the northern great Xing'an range, northeast China: Evidence from fluid inclusions, H-O-S-Pb isotopes, and Re-Os geochronology. Minerals, 10(7): 591
Sun Y G, Li B L, Sun F Y, Ding Q F, Wang B Y, Li Y J, Wang K. 2020b. Mineralization events in the Xiaokele porphyry Cu (-Mo) deposit, NE China: Evidence from zircon U-Pb and K-feldspar Ar-Ar geochronology and petrochemistry. Resource Geology, 70(3): 254-272
Uchida E, Endo S, Makino M. 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1): 47-56
Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30
Xiao Z F, Gammons C H, Williams-Jones A E. 1998. Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300℃ and saturated water vapor pressure. Geochimica et Cosmochimica Acta, 62(17): 2949-2964
Xu G Z, Deng C Z, Li C L, Lv C L, Yin R S, Ding J S, Yuan M W, Gou J. 2020. Petrogenesis of Late Carboniferous A-type granites and Early Cretaceous adakites of the Songnen Block, NE China: Implications for the geodynamic evolution of the Paleo-Asian and Paleo-Pacific oceans. Lithos, 366-367: 105575
Xu W L, Pei F P, Wang F, Meng E, Ji W Q, Yang D B, Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193
Yavuz F. 2003. Evaluating micas in petrologic and metallogenic aspect: Part II—Applications using the computer program Mica+. Computers & Geosciences, 29(10): 1215-1228
Zhu C, Sverjensky D A. 1991. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochimica et Cosmochimica Acta, 55(7): 1837-1858
陈国良, 张忠坤, 孙渺, 林彬, 赫健, 唐攀, 格桑顿珠, 苏贵喆, 任绍渊, 胡海涛. 2021. 西藏甲玛矿床南坑高分异I型花岗斑岩及黑云母矿物学特征. 矿物岩石地球化学通报, 40(2): 411-424
陈华勇, 吴超. 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50(7): 865-886
陈雷, 闫臻, 王宗起, 吴发富, 王瑞廷, 任涛, 郭延辉, 王鹏. 2014. 陕西山阳-柞水矿集区燕山期岩体矿物学特征: 对岩浆性质及成矿作用的指示. 地质学报, 88(1): 109-133
邓昌州. 2019. 大兴安岭北部中生代斑岩铜矿: 成岩与成矿. 博士学位论文. 长春: 吉林大学
冯雨周, 邓昌州, 陈华勇, 李光辉, 肖兵, 李如操, 时慧琳. 2020. 大兴安岭北段小柯勒河铜钼矿床硫化物Re-Os年龄及其地质意义. 大地构造与成矿学, 44(3): 465-475
高飞, 庞雅庆, 林锦荣, 胡志华. 2014. 诸广棉花坑铀矿床花岗岩中黑云母成分特征及其成岩成矿意义. 矿物岩石地球化学通报, 33(3): 384-388
高轲, 多吉, 唐菊兴, 张志, 宋俊龙, 丁帅, 宋扬, 林彬, 冯军. 2016. 西藏多龙矿集区拿若铜(金)矿床蚀变特征. 矿物岩石地球化学通报, 35(6): 1226-1237
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社
胡清华, 张世权, 尹静, 黄定柱, 伍健兢, 孟青, 杨丽梅, 罗光明. 2010. 中甸普朗斑岩型铜矿床围岩蚀变初步研究. 矿物岩石地球化学通报, 29(2): 192-201
李鸿莉, 毕献武, 涂光炽, 胡瑞忠, 彭建堂, 吴开兴. 2007. 岩背花岗岩黑云母矿物化学研究及其对成矿意义的指示. 矿物岩石, 27(3): 49-54
李如操, 陈华勇, 李光辉, 冯雨周, 肖兵, 韩金生, 邓昌州, 时慧琳. 2020. 大兴安岭地区富克山斑岩铜钼矿床地质特征与SWIR勘查应用. 地球科学, 45(5): 1517-1530
吕志成, 段国正, 董广华. 2003. 大兴安岭中南段燕山期三类不同成矿花岗岩中黑云母的化学成分特征及其成岩成矿意义. 矿物学报, 23(2): 177-184
阮林森, 陆三明, 赵丽丽, 金敏, 张怀东, 王波华, 江来利. 2017. 沙坪沟钼矿床岩浆岩中镁铁云母地球化学特征及其成岩成矿意义. 矿物岩石地球化学通报, 36(3): 502-509
尚毅广, 孙丰月, 姜和芳, 王启, 尹悦, 孟庆鹏, 张志颖. 2017. 大兴安岭北段霍洛台铜铅锌矿区花岗闪长岩的岩石成因: 地球化学和锆石U-Pb年代学制约. 世界地质, 36(2): 474-485
唐攀, 陈毓川, 唐菊兴, 郑文宝, 冷秋锋, 林彬, 方向. 2016. 西藏甲玛斑岩矿床系统黑云母特征及其地质意义. 矿床地质, 35(4): 846-866
唐攀, 唐菊兴, 郑文宝, 冷秋锋, 林彬, 唐晓倩. 2017. 西藏拉抗俄斑岩铜钼矿床黑云母矿物化学特征. 地学前缘, 24(5): 265-282
武广. 2006. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用. 博士学位论文. 长春: 吉林大学
熊小林, 石满全, 陈繁荣. 2001. 浅成-次火山岩黑云母Cu, Au成矿示踪意义. 矿床地质, 20(2): 107-111
周作侠. 1986. 湖北丰山洞岩体成因探讨. 岩石学报, 2(1): 59-70