Geochemical Characteristics and Paleoenvironment Paleoclimate Significance of Mudstone in the Shang-Gan-Chai-Gou Formation at the Northwestern Margin of Qaidam Basin
MA Wan-li1, JIANG Xiao-qing2, LI Xuan1, ZENG Liang1, YANG Ping2, MA Jin-long1*
1. School of Earth Sciences, Lanzhou University, Key Laboratory of Mineral Resources in Western China (Gansu Province),Lanzhou 730000, China; 2. Research Institute of Petroleum Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang Gansu 736202, China
Abstract:The study of the Cenozoic paleoenvironment in the northwest margin of Qaidam basin has great theoretical and practical significance for revealing the formation and evolution of oil and gas in the basin. In this paper, 26 mudstone samples from the Lenghu No.4 well in the Shang-Gan-Chai-Gou formation were studied, and the paleoenvironmental and paleoclimatic conditions were discussed according to variation characteristics of major and trace elements in these mudstone samples. The results showed that: nearly all Sr/Ba values were less than 1, while all Th/U values were greater than 2, in according with the terrestrial freshwater environment; values of V/Cr, Ni/Co, U/Th, and V/Sc ranged from 0.07 to 0.01, 3.25 to 2.18, 0.48 to 0.18, and 8.82 to 5.53, respectively, indicating the oxidation environment, which is also showed by the brown color sediments. It can be speculated that the uplift of the northern basin margin by the mid Himalayan movement resulted in the subsidence of lake basin and the decline of lake level, and thus formed the oxidation environment. The paleoclimatic index Sr/Cu was 13.35-5.91, indicating that the climate was generally warm and humid, and, approximately, periods of warm and humid climate were31.0-28.7 and 27.7-22.5 Ma, while dry periods were28.7-27.7 and 22.5-21.0 Ma. The temperature and humidity trends indicated by Sr/Cu, Rb/Sr, and Fe/Mn were basically the same. The sedimentological and paleontological characteristics also showed that the temperature and humidity environment should have been maintained for the whole sedimentary period. The warm and humid climate and the freshwater environment reflected the climate background of global warming in this period. The appearance of the periodic arid climate might be affected by the uplift of Tibet Plateau in the early stage, and mainly related to the regression of north Tethys in the late stage.
马万里, 江小青, 李璇, 曾亮, 杨平, 马锦龙. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义[J]. 矿物岩石地球化学通报, 2021, 40(5): 1166-1180.
MA Wan-li, JIANG Xiao-qing, LI Xuan, ZENG Liang, YANG Ping, MA Jin-long. Geochemical Characteristics and Paleoenvironment Paleoclimate Significance of Mudstone in the Shang-Gan-Chai-Gou Formation at the Northwestern Margin of Qaidam Basin. Acta Metallurgica Sinica, 2021, 40(5): 1166-1180.
Cramer B S, Toggweiler J R, Wright J D, Katz M E, Miller K G. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography and Paleoclimatology, 24(4): PA4216 Fang X M, Galy A, Yang Y B, Zhang W L, Ye C C, Song C H. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47(10): 992-996 Fluteau F, Ramstein G, Besse J. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. Journal of Geophysical Research Atmospheres, 1999, 1041(D10): 11995-12018 Haskin L A., Haskin M A, Frey F A, Wildeman T R.1968. Relative and Absolute Terrestrial Abundances of the Rare Earths. Origin & Distribution of the Elements, 1968(2)889-912 Ji J L, Zhang K X, Clift P D, Zhuang G S, Song B W, Ke X, Xu Y D. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam basin: Implications for the growth of the Northeastern Tibetan Plateau Gondwana Research, 46(15):141-155 Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129 Kimura H, Watanabe Y. 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29(11): 995-998 Li B S, Yan M D, Zhang W L, Pares J M, Fang X M, Yang Y P, Zhang D W, Guan C, Bao J. 2020. Magnetic fabric constraints on the cenozoic compressional strain changes in the Northern Qaidam marginal thrust belt and their tectonic implications. Tectonics, 39(6): 1-24 Li L L, Wu C D, Fan C F, Li J J, Zhang C H. 2017. Carbon and oxygen isotopic constraints on paleoclimate and paleoelevation of the southwestern Qaidam basin, northern Tibetan Plateau. Geoscience Frontiers, 8(05): 1175-1186 Lu H J, Xiong S F. 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters, 288(3-4): 539-550 Mao L G, Xiao A C, Wu L, Li B L, Wang L Q, Lou Q Q, Dong Y P, Qin S H. 2014. Cenozoic tectonic and sedimentary evolution of southern Qaidam Basin, NE Tibetan Plateau and its implication for the rejuvenation of Eastern Kunlun Mountains.Science China(Earth Sciences), 57(11):2726-2739 Masuda Akimasa, Nakamura Noboru, Tanaka Tsuyoshi. 1973. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochimica et Cosmochimica Acta, 37(2): 239-248 McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(1995): 223-253 Ramstein G, F Fluteau F, Besse J, Sylvie, J 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386(6627): 788-795 Rimmer S M, Thompson J A, Goodnight S A, Robl T L. 2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154 Rudnick R. L, Gao S. 2003. Treatise on Geochemistry Composition of the Continental Crust. Treatise on Geochemistry,3(01): 1-64 Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 1l75(1-2): 29-48 Song J, Z Bao Z D, X Zhao X M, Y Gao Y S, X Song X M, Y Zhu Y Z, J Deng J, W Liu W, Z Wang Z C, C Ming C D, Meng Q K, Zhang L, Mao S W, Zhang Y L, Yu X, Wei M Y. 2018. Sedimentology and geochemistry of middle-upper Permian in northwestern Turpan-Hami Basin, China: Implication for depositional environments and petroleum geology. Energy Exploration & Exploitation, 36(4): 910-941 Sun Z M, Yang Z Y, Pei J L, Ge X H, Wang X S, Yang T S, Li W M, Yuan S H. 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam basin, China: Implications for tectonic uplift and block rotation in northern Tibetan Plateau. Earth and Planetary Science Letters, 237(3-4): 635-646 Wang J, Wang Y J, Liu Z C, Jian Qing, Li J Q, Ping X P. 1999. Cenozoic environmental evolution of the Qaidam basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2): 37-47 Yan D F, Zhang L, Han L, Yang T, Chen Y Q. 2018. Podocarpium from the Oligocene of NW Qaidam basin, China and its implications. Review of Palaeobotany and Palynology, 259: 1-9 Yang Tao, Zhang L, Li W J, Han L, Zhang Y X, Chen Y Q, Yan D F. 2018.New Schizothoracine from Oligocene of Qaidam basin, Northern Tibetan Plateau, China, and Its Significance. Journal of Vertebrate Paleontology, 38(2):1-12 Yin An, Dang Y Q, Zhang M, Chen X H, McRivette M W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentationsedinentation, and regional tectonic reconstruction. GSA BulletinGeological Society of America Bulletin, 120(7-8): 813-846, 847-876 Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science (New York, N. Y.), 292(5517): 686-693 Zhou J X, Xu F Y, T Wang T C, Cao A F, Yin C M. 2006. Cenozoic deformation history of the Qaidam basin, NW China: Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth & Planetary Science Letters, 243(1-2): 195-210 安芷生, 张培震, 王二七, 王苏民, 强小科, 李力, 宋友桂, 常宏, 刘晓东, 周卫健, 刘卫国, 曹军骥, 李小强, 沈吉, 刘禹, 艾莉. 2006. 中新世以来我国季风-干旱环境演化与青藏高原的生长.第四纪研究, 26(5):678-693 安芷生. 2001. 亚洲季风演化、北半球大冰期的发展与喜马拉雅-青藏高原隆升. 中国基础科学, 2001(8): 119-113 曾秋楠, 张交东, 于炳松, 刘旭锋, 周新桂. 2020. 太康隆起上古生界稀土元素地球化学特征及其地质意义. 海洋地质与第四纪地质, 40(3): 132-143 陈安东, 郑绵平. 2017. 柴达木盆地成盐期与青藏高原第四纪冰期及构造运动阶段的相关性.科技导报, 35(6): 36-41 陈波, 程鑫, 谈笑哲, 马立辉, 周超, 李国福. 2019. 元素地球化学分析法在沉积环境判别中的应用—以冷湖地区上干柴沟组为例. 西安石油大学学报(自然科学版), 34(02): 31-38 陈德潜, 陈刚. 1990. 实用稀土元素地球化学. 北京: 冶金工业出版社 陈骏, 汪永进, 陈旸, 刘连文, 季峻峰, 鹿化煜. 2001. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义. 地质学报, 75(2): 259-266 陈伟, 李璇, 曾亮, 王庆同, 焦学尧, 杨平, 江小青, 马锦龙. 2019. 柴西上干柴沟组中上段介壳微量元素古环境古气候意义. 沉积学报, 37(5): 992-1005 陈志鹏, 任战利, 于春勇, 祁凯, 任文波, 杨燕, 马骞. 2018. 银额盆地哈日凹陷下白垩统热水沉积岩特征及成因. 地球科学, 43(6): 1941-1956 陈志勇, 汪立群, 陈书平, 王志欣. 2005.冷湖构造带西段新生界构造模型及变形特征.新疆石油地质, 26(6):12-15 樊小龙, 余平辉, 曾亮, 焦学尧, 江小青, 杨平, 马锦龙. 2016. 柴达木盆地新生界生物地层年代研究. 微体古生物学报, 33(4): 363-378 冯兴雷, 付修根, 谭富文, 陈文彬. 2018. 羌塘盆地沃若山地区上三叠统土门格拉组烃源岩沉积环境分析. 沉积与特提斯地质, 38(2): 3-13 冯杨伟, 姜亭, 宋博, 牛亚卓. 2017. 中哈边境伊犁地区中二叠统沉积环境的地球化学判别. 地质学报, 91(4): 942-953 付锁堂, 肖安成, 汪立群. 2013. 柴达木盆地典型构造剖面. 北京: 科学出版社. 1-286 关平, 简星. 2013. 青藏高原北部新生代构造演化在柴达木盆地中的沉积记录. 沉积学报, 31(5): 824-833 何庆, 高键, 董田, 何生, 翟刚毅, 邹高峰. 2021.鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复.沉积学报,39(3):686-703 胡彬, 张春霞, 吴海斌, 郝青振, 郭正堂. 2019. 西宁盆地始新世河湖相沉积序列黏土矿物组合特征及其古环境意义. 中国科学: 地球科学, 49(3): 569-583 胡俊杰, 马寅生, 王宗秀, 柳永清, 高万里, 钱涛. 2017. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候. 古地理学报, 19(3): 480-490 胡俊杰, 马寅生, 吴祎, 李宗星, 彭博, 魏小洁, 刘大鹏. 2019. 柴达木盆地侏罗纪古气候演变过程: 来自化学风化特征的证据. 高校地质学报, 25(4): 548-557 胡晓峰, 刘招君, 柳蓉, 刘冬青, 张明明, 许圣传, 孟庆涛. 2012. 抚顺盆地始新统计军屯组微量元素特征及油页岩的有利成矿条件. 吉林大学学报(地球科学版), 42(S1): 60-71 黄静, 李琦, 胡俊杰, 杨强强, 葛东升, 陈若瑜. 2015. 羌塘角木日地区中二叠统龙格组泥岩地球化学特征及其地质意义. 高校地质学报, 21(1): 59-67 黄俨然, 肖正辉, 余烨, 焦鹏. 2020. 湘西北下寒武统黑色岩系元素地球化学特征及地质意义. 地球化学, 49(5): 516-527 霍斐斐. 2019. 青藏高原东北部中-新生代地层古地磁研究及构造意义. 博士学位论文. 西安: 西北大学 贾艳艳, 邢学军, 孙国强, 史基安, 刘士杰. 2015. 柴北缘西段古-新近纪古气候演化. 地球科学—(中国地质大学学报), 40(12): 1955-1967 金中国, 刘辰生, 邹林, 郑明泓, 张力, 韩英. 2018. 贵州务-正-道地区二叠纪铝土矿沉积环境地球化学证据. 地质学报, 92(4): 817-827 莱尔曼. 1989. 湖泊的化学地质学和物理学. 王苏民, 译. 北京: 地质出版社 黎敦朋, 肖爱芳, 李新林, 周小康. 2004. 青藏高原隆升与环境效应. 陕西地质, 22(1): 1-10 李被, 刘池洋, 黄雷, 蒋飞虎, 郭佩, 鹿坤. 2018. 东濮凹陷北部沙河街组三段中亚段沉积环境分析. 现代地质, 32(2): 227-239 李凤杰, 孟立娜, 方朝刚, 李磊, 林洪. 2012.柴达木盆地北缘古近纪-新近纪古地理演化.古地理学报,14(5): 596-606 李吉均, 方小敏. 1998. 青藏高原隆起与环境变化研究. 科学通报, 43(15): 1569-1574 李文博, 李晓海, 丁秋红, 陈树旺, 张健. 2019. 辽宁北部秀水盆地白垩系义县组泥岩地球化学特征及地质意义. 现代地质, 33(2): 284-292 栗兵帅, 颜茂都, 张伟林, 杨永鹏, 张大文, 陈毅, 关冲. 2019. 阿尔金断裂南侧弧形地貌单元成因及其构造意义. 地震地质, 41(2): 300-319 梁万乐, 李贤庆, 魏强, 李谨, 孙可欣, 和钰凯, 张亚超. 2019.库车坳陷北部山前带中生界泥岩元素地球化学特征及其沉积环境意义. 矿业科学学报, 4(5): 375-383 林晓慧, 詹兆文, 邹艳荣, 蔡玉兰, 梁天, 石军. 2019. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义. 地球化学, 48(1): 67-78 刘康, 王伟涛, 赵旭东, 庞建章, 俞晶星. 2020. 青藏高原东北缘柴达木盆地红沟剖面物源分析及其构造意义. 地质学报, 94(3): 716-728 刘琪, 潘晓东, 李凤杰. 2011. 柴北缘西段新近系上干柴沟组沉积相特征分析. 沉积与特提斯地质, 31(2): 67-74 马新民, 刘池洋, 罗金海, 曾方明, 陈大友, 张越清. 2014. 柴达木盆地上干柴沟组时代归属及代号变更建议. 现代地质, 28(6): 1266-1274 毛玲玲, 伊海生, 季长军, 夏国清. 2014. 柴达木盆地新生代湖相碳酸盐岩岩石学及碳氧同位素特征. 地质科技情报, 33(1): 41-48 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(06): 43-51 潘家伟, 李海兵, 孙知明, 刘栋梁, 吴婵, 于常青. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应. 岩石学报, 31(12): 3701-3712 青海地质矿产局. 1991. 青海省区域地质志. 北京: 地质出版社. 1-661 青海省地层表编写小组. 1980. 西北地区区域地层表: 青海省分册. 北京: 地质出版社. 1-277 师晶, 黄文辉, 吕晨航, 崔晓南. 2018. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义. 石油学报, 39(8): 876-889 施辉, 刘震, 连良达, 毛亚昆, 张勤学, 杨乾政, 吴瑾. 2013. 高原咸化湖盆岩性油气藏富集规律—以柴达木盆地西南区为例. 天然气地球科学, 24(4): 701-711 施雅风, 李吉均, 李炳元, 姚檀栋, 王苏民, 李世杰, 崔之久, 王富保, 潘保田, 方小敏, 张青松. 1999. 晚新生代青藏高原的隆升与东亚环境变化.地理学报,54 (1):12-22 宋博文. 2013. 柴达木盆地北缘早始新世—上新世环境演变及生物群研究. 博士学位论文. 武汉: 中国地质大学 宋春晖. 2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程. 博士学位论文. 兰州: 兰州大学 孙东怀, 王鑫, 李宝锋, 陈发虎, 王飞, 李再军, 梁百庆, 马志伟. 2013. 新生代特提斯海演化过程及其内陆干旱化效应研究进展.海洋地质与第四纪地质, 33(04):135-151 孙国强, 陈波, 郑永仙, 谢梅, 夏维民, 史基安. 2015. 柴北缘冷湖五号构造中新统成岩作用及沉积环境. 天然气地球科学, 26(4): 679-688 孙国强, 杜忠明, 贾艳艳, 周飞, 郝小梅, 史基安. 2012. 柴达木盆地北缘西段古近纪以来沉积模式研究. 岩性油气藏, 24(4): 13-18 谭聪, 袁选俊, 于炳松, 刘策, 李雯, 崔景伟. 2019. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义. 现代地质, 33(3): 615-628 吴福志, 刘东娜, 赵峰华, 邹雨, 谢安坤, 李江山. 2021.塔里木盆地西北缘苏盖特布拉克组沉积环境及构造背景研究.矿物岩石地球化学通报, 40(2):478-490 吴赛赛, 赵省民, 邓坚. 2016. 漠河盆地中侏罗统漠河组泥岩元素地球化学特征及其地质意义: 以MK-3井为例. 地质科技情报, 35(3): 17-27 熊小辉, 肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414 徐崇凯, 刘池洋, 郭佩, 黎茂稳, 黄雷, 赵岩, 潘银华, 张益银. 2018. 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义. 沉积学报, 36(3): 617-629 徐红艳. 2018. 柴达木盆地红沟剖面新生代孢粉植物群研究. 博士学位论文. 北京: 中国地震局地质研究所 于健, 郭巍, 王少华, 林斌. 2015. 饶河地区大岭桥组沉积环境恢复及其地质意义. 世界地质, 34(1): 113-119 张国涛, 彭中勤, 王传尚, 李志宏. 2016. 贵州独山下二叠统梁山组地球化学特征及其沉积环境意义. 中国地质, 43(4): 1291-1303 张天福, 孙立新, 张云, 程银行, 李艳锋, 马海林, 鲁超, 杨才, 郭根万. 2016. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义. 地质学报, 90(12): 3454-3472 张伟林. 2006. 柴达木盆地新生代高精度磁性地层与青藏高原隆升. 博士学位论文. 兰州: 兰州大学 张文静. 2016. 柴达木盆地东北缘新生代古气候事件的沉积学研究. 硕士学位论文. 杭州: 浙江大学 赵凡,孙德强,闫存凤,张小军,孙松领,倪祥龙,程玉红. 2013.柴达木盆地中新生代构造演化及其与油气成藏关系.天然气地球科学, 24(5): 940-947 郑度, 姚檀栋. 2006. 青藏高原隆升及其环境效应. 地球科学进展, 21(5): 451-458 仲新. 2007. 柴达木盆地西缘阿尔金山南坡上干柴沟组大古植物化石的发现及其地质意义. 甘肃地质, 16(4): 26-30