Scaling Behavior of Surficial Geochemical Reactions
LIU Yuan-yuan1, MA Teng-fei1, CHEN Yang1, YANG Xiao-fan2, LIU Chong-xuan3
1. MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University,Nanjing 210023, China; 2. Faculty of Geographical Science, Beijing Normal University,Beijing 100875, China; 3. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen Guangdong 518055, China
Abstract:The geochemical reaction rate in the supergene environment has a significant scale effect. The field observation rate of many geochemical reactions is 2 to 5 orders of magnitude lower than the laboratory observation rate, which makes the comparison and extrapolation of research results at different scales extremely difficult. This article summarizes the influencing factors of the geochemical reaction rate changes with temporal and spatial scales, emphasizes the main controlling process of the geochemical reaction rate changes with the scale, as well as the scale effect caused by sub-scale heterogeneity. Finally, several research methods of scale conversion are introduced. Since the scale effect of the geochemical reaction rate is widespread, it is necessary to understand its limitations and select an appropriate extrapolation method when the geochemical reaction rate is extrapolated.
Amundson R. 2014. Soil formation. In: Holland H D, Turekian K K(eds.). Treatise on Geochemistry (Second Edition). Amsterdam: Elsevier, 1-26 Arvidson R S, Luttge A. 2010. Mineral dissolution kinetics as a function of distance from equilibrium-New experimental results. Chemical Geology, 269(1-2): 79-88 Balogh-Brunstad Z, Keller C K, Dickinson J T, Stevens F, Li C Y, Bormann B T. 2008. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochimica et Cosmochimica Acta, 72(11): 2601-2618 Bandstra J Z, Brantley S L. 2008. Surface evolution of dissolving minerals investigated with a kinetic Ising model. Geochimica et Cosmochimica Acta, 72(11): 2587-2600 Bao C, Wu H F, Li L, Newcomer D, Long P E, Williams K H. 2014. Uranium bioreduction rates across scales: Biogeochemical hot moments and hot spots during a biostimulation experiment at Rifle, Colorado. Environmental Science & Technology, 48(17): 10116-10127 Berner R A. 1978. Rate control of mineral dissolution under earth surface conditions. American Journal of Science, 278(9): 1235-1252 Berner R A, Sjöberg E L, Velbel M A, Krom M D. 1980. Dissolution of pyroxenes and amphiboles during weathering. Science, 207(4436): 1205-1206 Berner R A, Lasaga A C, Garrels R M. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283(7): 641-683 Bertics V J, Löscher C R, Salonen I, Dale A W, Gier J, Schmitz R A, Treude T. 2013. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences, 10(3): 1243-1258 Blowes D W, Ptacek C J, Jambor J L, Weisener C G, Paktunc D, Gould W D, Johnson D B. 2014. The geochemistry of acid mine drainage. In: Holland H D, Turekian K K(eds.). Treatise on Geochemistry (Second Edition). Amsterdam: Elsevier, 69-113 Bouissonnié A, Daval D, Marinoni M, Ackerer P. 2018. From mixed flow reactor to column experiments and modeling: Upscaling of calcite dissolution rate. Chemical Geology, 487: 63-75 Bowell R J. 1994. Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3): 279-286 Brantley S L. 2008. Kinetics of mineral dissolution. In: Brantley S L, Kubichi J D, White A F(eds.). Kinetics of Water-Rock Interaction. New York: Springer, 151-210 Brantley S L, Conrad C F. 2008. Analysis of rates of geochemical reactions. In: Brantley S L, Kubicki J D, White A F(eds.). Kinetics of Water-Rock Interaction. New York: Springer, 1-38 Brantley S L, Olsen A A. 2014. Reaction kinetics of primary rock-forming minerals under ambient conditions. In: Holland H D, Turekian K K(eds.). Treatise on Geochemistry (Second Edition). Amsterdam: Elsevier, 69-113 Cohen C E, Ding D, Quintard M, Bazin B. 2008. From pore scale to wellbore scale: Impact of geometry on wormhole growth in carbonate acidization. Chemical Engineering Science, 63(12): 3088-3099 Coleman M L, Hedrick D B, Lovley D R, White D C, Pye K. 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361(6411): 436-438 Dai Z X, Wolfsberg A, Lu Z M, Deng H L. 2009. Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock. Geophysical Research Letters, 36(1): L01403 Davidson E A, Janssens I A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081): 165-173 Gislason S R, Arnorsson S, Armannsson H. 1996. Chemical weathering of basalt in southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296(8): 837-907 Goldberg S, Lesch S M, Suarez D L, Basta N T. 2005. Predicting arsenate adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Science Society of America Journal, 69(5): 1389-1398 Gu X, Heaney P J, Reis F D A A, Brantley S L. 2020a. Deep abiotic weathering of pyrite. Science, 370(6515): eabb8092 Gu X, Rempe D M, Dietrich W E, West A J, Lin T C, Jin L X, Brantley S L. 2020b. Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochimica et Cosmochimica Acta, 269: 63-100 Gustafsson J P. 2001. Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil. European Journal of Soil Science, 52(4): 639-653 Hao Y, Smith M M, Carroll S A. 2019. Multiscale modeling of CO2-induced carbonate dissolution: From core to meter scale. International Journal of Greenhouse Gas Control, 88: 272-289 Hedin L O, Vitousek P M, Matson P A. 2003. Nutrient losses over four million years of tropical forest development. Ecology, 84(9): 2231-2255 Hodson M E. 2002. Variation in element release rate from different mineral size fractions from the B horizon of a granitic podzol. Chemical Geology, 190(1-4): 91-112 Hodson M E. 2006. Does reactive surface area depend on grain size? Results from pH 3, 25 ℃ far-from-equilibrium flow-through dissolution experiments on anorthite and biotite. Geochimica et Cosmochimica Acta, 70(7): 1655-1667 Holdren Jr G R, Speyer P M. 1985. Reaction rate-surface area relationships during the early stages of weathering—I. Initial observations. Geochimica et Cosmochimica Acta, 49(3): 675-681 Holdren Jr G R, Speyer P M. 1987. Reaction rate-surface area relationships during the early stages of weathering. II. Data on eight additional feldspars. Geochimica et Cosmochimica Acta, 51(9): 2311-2318 Huang K, Liu Y Y, Yang C, Duan Y H, Yang X F, Liu C X. 2018. Identification of hydrobiogeochemical processes controlling seasonal variations in arsenic concentrations within a riverbank aquifer at Jianghan Plain, China. Water Resources Research, 54(7): 4294-4308 Kenoyer G J, Bowser C J. 1992. Groundwater chemical evolution in a sandy silicate aquifer in Northern Wisconsin: 2. Reaction modeling. Water Resources Research, 28(2): 591-600 Leung D Y C, Caramanna G, Maroto-Valer M M. 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39: 426-443 Li L, Peters C A, Celia M A. 2006. Upscaling geochemical reaction rates using pore-scale network modeling. Advances in Water Resources, 29(9): 1351-1370 Li L, Steefel C I, Yang L. 2008. Scale dependence of mineral dissolution rates within single pores and fractures. Geochimica et Cosmochimica Acta, 72(2): 360-377 Li L, Salehikhoo F, Brantley S L, Heidari P. 2014. Spatial zonation limits magnesite dissolution in porous media. Geochimica et Cosmochimica Acta, 126: 555-573 Li M J, Qian W J, Gao Y Q, Shi L, Liu C X. 2017. Functional enzyme-based approach for linking microbial community functions with biogeochemical process kinetics. Environmental Science & Technology, 51(20): 11848-11857 Li M J, Li R, Gao Y Q, Resch C T, Qian W J, Shi T J, Shi L, Liu H, Liu C X. 2020. Nitrate bioreduction dynamics in hyporheic zone sediments under cyclic changes of chemical compositions. Journal of Hydrology, 585: 124836 Li X X, Qin F Y, Chen X Y, Sheng A X, Wang Z W, Liu J. 2019. Dissolution behavior of isolated and aggregated hematite particles revealed by in situ liquid cell Transmission Electron Microscopy. Environmental Science & Technology, 53(5): 2416-2425 Li Z B, Xu J, Teng H H, Liu L W, Chen J, Chen Y, Zhao L, Ji J F. 2015. Bioleaching of lizardite by magnesium- and nickel-resistant fungal isolate from serpentinite soils—Implication for carbon capture and storage. Geomicrobiology Journal, 32(2): 181-192 Li Z B, Liu L W, Chen J, Teng H H. 2016. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology, 44(4): 319-322 Liger E, Charlet L, Van Cappellen P. 1999. Surface catalysis of uranium(VI) reduction by iron(II). Geochimica et Cosmochimica Acta, 63(19-20): 2939-2955 Lin H, Taillefert M. 2014. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Geochimica et Cosmochimica Acta, 133: 17-33 Liu C X, Zachara J M. 2001. Uncertainties of Monod kinetic parameters nonlinearly estimated from batch experiments. Environmental Science & Technology, 35(1): 133-141 Liu C X, Zachara J M, Qafoku N P, Wang Z M. 2008. Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resources Research, 44(8): W08413 Liu C X, Shang J Y, Kerisit S, Zachara J M, Zhu W H. 2013. Scale-dependent rates of uranyl surface complexation reaction in sediments. Geochimica et Cosmochimica Acta, 105: 326-341 Liu C X, Liu Y Y, Kerisit S, Zachara J. 2015a. Pore-scale process coupling and effective surface reaction rates in heterogeneous subsurface materials. Reviews in Mineralogy and Geochemistry, 80(1): 191-216 Liu Y Y, Liu C X, Kukkadapu R K, McKinley J P, Zachara J, Plymale A E, Miller M D, Varga T, Resch C T. 2015b. 99Tc (VII) retardation, reduction, and redox rate scaling in naturally reduced sediments. Environmental Science & Technology, 49(22): 13403-13412 Liu Y Y, Liu C X, Zhang C Y, Yang X F, Zachara J M. 2015c. Pore and continuum scale study of the effect of subgrid transport heterogeneity on redox reaction rates. Geochimica et Cosmochimica Acta, 163: 140-155 Liu Y Y, Xu F, Liu C X. 2017. Coupled hydro-biogeochemical processes controlling Cr reductive immobilization in Columbia River hyporheic zone. Environmental Science & Technology, 51(3): 1508-1517 Liu Z H, Macpherson G L, Groves C, Martin J B, Yuan D X, Zeng S B. 2018. Large and active CO2 uptake by coupled carbonate weathering. Earth-Science Reviews, 182: 42-49 Lovley D R. 2000. Fe(III) and Mn(IV) Reduction. In: Lovley D R(ed.). Environmental Microbe-Metal Interactions. Washington: ASM Press, 1-30 MacInnis I N, Brantley S L. 1992. The role of dislocations and surface morphology in calcite dissolution. Geochimica et Cosmochimica Acta, 56(3): 1113-1126 Madigan M T, Bender K S, Buckley D H, Sattley W M, Stahl D A. 2019. Brock biology of microorganisms, Newyork, Pearson Education, 117-119 Maher D T, Santos I R, Leuven J R F W, Oakes J M, Erler D V, Carvalho M C, Eyre B D. 2013. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales. Environmental Science & Technology, 47(22): 12938-12945 Maher K. 2010. The dependence of chemical weathering rates on fluid residence time. Earth and Planetary Science Letters, 294(1-2): 101-110 Mandelbrot B B. 1982. The fractal geometry of nature. San Francisco: W. H. Freeman and Company Markewitz D, Davidson E A, De O Figueiredo R, Victoria R L, Krusche A V. 2001. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature, 410(6830): 802-805 Miller A W, Rodriguez D R, Honeyman B D. 2010. Upscaling sorption/desorption processes in reactive transport models to describe metal/radionuclide transport: A critical review. Environmental Science & Technology, 44(21): 7996-8007 Mogk D W, Locke III W W. 1988. Application of Auger Electron Spectroscopy (AES) to naturally weathered hornblende. Geochimica et Cosmochimica Acta, 52(10): 2537-2542 Molins S, Knabner P. 2019. Multiscale approaches in reactive transport modeling. Reviews in Mineralogy and Geochemistry, 85(1): 27-48 Murphy S F, Brantley S L, Blum A E, White A F, Dong H L. 1998. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering. Geochimica et Cosmochimica Acta, 62(2): 227-243 Murphy W M, Oelkers E H, Lichtner P C. 1989. Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes. Chemical Geology, 78(3-4): 357-380 Navarre-Sitchler A, Brantley S. 2007. Basalt weathering across scales. Earth and Planetary Science Letters, 261(1-2): 321-334 Nickel M, Vandieken V, Brüchert V, Jørgensen B B. 2008. Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep Sea Research Part II: Topical Studies in Oceanography, 55(20-21): 2390-2398 Oguchi C T, Matsukura Y. 2000. Effect of porosity on the increase in weathering-rind thicknesses of andesite gravel. Engineering Geology, 55(1-2): 77-89 O'Loughlin E J, Kelly S D, Cook R E, Csencsits R, Kemner K M. 2003. Reduction of uranium(VI) by mixed iron(II)/ iron(III) hydroxide (green rust): Formation of UO2 nanoparticles. Environmental Science & Technology, 37(4): 721-727 Orgogozo L, Golfier F, Buès M A. 2009. Upscaling of transport processes in porous media with biofilms in equilibrium and non-equilibrium conditions. Applicable Analysis, 88(10-11): 1579-1588 Orgogozo L, Golfier F, Buès M, Quintard M. 2010. Upscaling of transport processes in porous media with biofilms in non-equilibrium conditions. Advances in Water Resources, 33(5): 585-600 Pechukas P. 1981. Transition state theory. Annual Review of Physical Chemistry, 32: 159-177 Percak-Dennett E, He S, Converse B, Konishi H, Xu H, Corcoran A, Noguera D, Chan C, Bhattacharyya A, Borch T, Boyd E, Roden E E. 2017. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH. Geobiology, 15(5): 690-703 Peters V, Conrad R. 1996. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biology and Biochemistry, 28(3): 371-382 Raoof A, Hassanizadeh S M. 2010a. Upscaling transport of adsorbing solutes in porous media. Journal of Porous Media, 13(5): 395-408 Raoof A, Hassanizadeh S M, Leijnse A. 2010b. Upscaling transport of adsorbing solutes in porous media: Pore-network modeling. Vadose Zone Journal, 9(3): 624-636 Rawson J, Prommer H, Siade A, Carr J, Berg M, Davis J A, Fendorf S. 2016. Numerical modeling of arsenic mobility during reductive iron-mineral transformations. Environmental Science & Technology, 50(5): 2459-2467 Reed D C, Algar C K, Huber J A, Dick G J. 2014. Gene-centric approach to integrating environmental genomics and biogeochemical models. Proceedings of the National Academy of Sciences of the United States of America, 111(5): 1879-1884 Rodrigo A, Recous S, Neel C, Mary B. 1997. Modelling temperature and moisture effects on C-N transformations in soils: Comparison of nine models. Ecological Modelling, 102(2-3): 325-339 Sak P B, Fisher D M, Gardner T W, Murphy K, Brantley S L. 2004. Rates of weathering rind formation on Costa Rican basalt. Geochimica et Cosmochimica Acta, 68(7): 1453-1472 Salehikhoo F, Li L, Brantley S L. 2013. Magnesite dissolution rates at different spatial scales: The role of mineral spatial distribution and flow velocity. Geochimica et Cosmochimica Acta, 108: 91-106 Salehikhoo F, Li L. 2015. The role of magnesite spatial distribution patterns in determining dissolution rates: When do they matter? Geochimica et Cosmochimica Acta, 155: 107-121 Schaefer M V, Guo X X, Gan Y Q, Benner S G, Griffin A M, Gorski C A, Wang Y X, Fendorf S. 2017. Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze River Basin. Geochimica et Cosmochimica Acta, 204: 104-119 Schnoor J L. 1990. Kinetics of chemical weathering: a comparison of laboratory and field rates. In: Stumm W(ed.). Aquatic chemical kinetics-reaction rates of processes in natural waters, New York: Wiley, 475-504 Schott J, Berner R A. 1983. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochimica et Cosmochimica Acta, 47(12): 2233-2240 Schultze-Lam S, Fortin D, Davis B S, Beveridge T J. 1996. Mineralization of bacterial surfaces. Chemical Geology, 132(1-4): 171-181 Singer P C, Stumm W. 1970. Acidic mine drainage: the rate-determining step. Science, 167(3921): 1121-1123 Smith S L, Jaffé P R. 1998. Modeling the transport and reaction of trace metals in water-saturated soils and sediments. Water Resources Research, 34(11): 3135-3147 Song H S, Cannon W R, Beliaev A S, Konopka A. 2014. Mathematical modeling of microbial community dynamics: A methodological review. Processes, 2(4): 711-752 Song H S, Thomas D G, Stegen J C, Li M J, Liu C X, Song X H, Chen X Y, Fredrickson J K, Zachara J M, Scheibe T D. 2017. Regulation-structured dynamic metabolic model provides a potential mechanism for delayed enzyme response in denitrification process. Frontiers in Microbiology, 8: 1866 Southam G. 2010. Bacterial surface-mediated mineral formation. In: Lovley D R(ed.). Environmental Microbe-Metal Interactions. Washington: ASM Press, 257-276 Stillings L L, Brantley S L. 1995. Feldspar dissolution at 25 ℃ and pH 3: Reaction stoichiometry and the effect of cations. Geochimica et Cosmochimica Acta, 59(8): 1483-1496 Stuckey J, Schaefer M V, Kocar B D, Benner S G, Fendorf S. 2016. Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 9(1): 70-76 Swoboda-Colberg N G, Drever J I. 1993. Mineral dissolution rates in plot-scale field and laboratory experiments. Chemical Geology, 105(1-3): 51-69 Truex M J, Vermeul V R, Fritz B G, Mackley R D, Horner J A, Johnson C D, Newcomer D R. 2012. Investigation of hexavalent chromium flux to groundwater at the 100-C-7: 1 excavation site. Richland, WA: PNNL-21845, Pacific Northwest National Laboratory Van Bodegom P M, Scholten J C M. 2001. Microbial processes of CH4 production in a rice paddy soil: Model and experimental validation. Geochimica et Cosmochimica Acta, 65(13): 2055-2066 Van Cappellen P, Wang Y F. 1996. Cycling of iron and manganese in surface sediments: A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of Science, 296(3): 197-243 Velbel M A. 1993. Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates. Chemical Geology, 105(1-3): 89-99 Walker J C G, Hays P B, Kasting J F. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research-Oceans, 86(C10): 9776-9782 Wen H, Li L. 2017. An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica et Cosmochimica Acta, 210: 289-305 Wen H, Li L. 2018. An upscaled rate law for mineral dissolution in heterogeneous media: The role of time and length scales. Geochimica et Cosmochimica Acta, 235: 1-20 White A F. 2002. Determining mineral weathering rates based on solid and solute weathering gradients and velocities: Application to biotite weathering in saprolites. Chemical Geology, 190(1-4): 69-89 White A F, Brantley S L. 2003. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chemical Geology, 202(3-4): 479-506 Xu F, Liu Y Y, Zachara J M, Bowden M, Kennedy D, Plymale A E, Liu C X. 2017. Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments. Journal of Hydrology, 555: 278-287 Xu F, Liu Y Y, Liu C X. 2018. A generalized-rate model for describing and scaling redox kinetics in sediments containing variable redox-reactive materials. Environmental Science & Technology, 52(9): 5268-5276 Yan S, Liu Y Y, Liu C X, Shi L, Shang J Y, Shan H M, Zachara J, Fredrickson J, Kennedy D, Resch C T, Thompsonb C, Fanslerb S. 2016. Nitrate bioreduction in redox-variable low permeability sediments. Science of the Total Environment, 539: 185-195 Yan Z F, Liu C X, Liu Y Y, Bailey V L. 2017. Multiscale investigation on biofilm distribution and its impact on macroscopic biogeochemical reaction rates. Water Resources Research, 53(11): 8698-8714 Yan Z F, Bond-Lamberty B, Todd-Brown K E, Bailey V L, Li S L, Liu C Q, Liu C X. 2018. A moisture function of soil heterotrophic respiration that incorporates microscale processes. Nature Communications, 9(1): 2562 Yang C, Zhang Y K, Liu Y Y, Yang X F, Liu C X. 2018. Model-based analysis of the effects of dam-induced river water and groundwater interactions on hydro-biogeochemical transformation of redox sensitive contaminants in a hyporheic zone. Water Resources Research, 54(9): 5973-5985 Zachara J M, Fredrickson J K, Li S M, Kennedy D W, Smith S C, Gassman P L. 1998. Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. American Mineralogist, 83(11-12): 1426-1443 Zachara J M, Kukkadapu R K, Fredrickson J K, Gorby Y A, Smith S C. 2002. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiology Journal, 19(2): 179-207 Zachara J M, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D. 2007. Geochemical processes controlling migration of tank wastes in Hanford's vadose zone. Vadose Zone Journal, 6(4): 985-1003 Zarnetske J P, Haggerty R, Wondzell S M, Baker M A. 2011. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research: Biogeosciences, 116(G1): G01025 Zarnetske J P, Haggerty R, Wondzell S M. 2015. Coupling multiscale observations to evaluate hyporheic nitrate removal at the reach scale. Freshwater Science, 34(1): 172-186 Zhang C Y, Liu C C, Shi Z. 2013. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environmental Science & Technology, 47(9): 4131-4139 Zhu C, Yao X Z, Zhao L, Teng H H. 2016. A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems. Review of Scientific Instruments, 87(11): 115115 陈骏, 王鹤年. 2004. 地球化学. 北京: 科学出版社 黄国有, 林最近, 陆进, 梁文龙. 2021. 桂西沉积型铝土矿床成矿规律及成矿模式. 矿产勘查, 12(3): 630-639 盛亚斌, 邬铁. 2020. 浙江中泰下铜山地区碳酸盐岩风化过程中重金属次生富集机理. 西部探矿工程, 32(7): 135-139 王浩贤, 李子波, 陈旸, 詹涛, 杨业, 李峨, 王洪涛. 2019. 真菌-玄武岩相互作用过程中真菌属种差异对元素释放行为的影响. 第四纪研究, 39(2): 458-468 王世杰, 李阳兵, 李瑞玲. 2003. 喀斯特石漠化的形成背景、演化与治理. 第四纪研究, 23(6): 657-666 吴卫华, 郑洪波, 杨杰东, 罗超, 周斌. 2011. 中国河流流域化学风化和全球碳循环. 第四纪研究, 31(3): 397-407 吴卫华, 郑洪波, 杨杰东, 罗超. 2012. 硅酸盐风化与全球碳循环研究回顾及新进展. 高校地质学报, 18(2): 215-224 续海金, 马昌前. 2002. 地壳风化速率研究综述. 地球科学进展, 17(5): 670-678