Abstract:The key processes of the formation and evolution of oceanic lithosphere are how melts were extracted from asthenospheric mantle, then migrated and converged, and eventually formed the oceanic crust. Ophiolite may be targets for revealing these processes. Previous studies have suggested that the melts migrated and accumulated mainly alongthe vein-like dunite channels in the mantle. This type of channels, combined with magmatic systems within the crust-mantle transition zone and the oceanic crust, formed the giant melt plumbing system within the oceanic spreading center. When the melts derived from deep asthenospheric mantle flow through the dunite channels, complex interactions between melts and mantle would occur to have generated observable compositional variations between the migrating melts and the interacted lithospheric mantle, resulting in the compositional decoupling between oceanic lithospheric crust and mantle. Within different oceanic spreading centers, the melt migration manners and processes within the mantle are various, leading to the complexity and variation of the structure and composition of oceanic lithosphere. The Yarlung Zangbo (YZ) ophiolites in Tibet of China formed in various tectonic settings (e.g., mid-ocean ridges, subduction zones). The relatively fresh dunite channel samples, such as dunite, chromitite and pyroxenite, have been observed within the YZ ophiolitic mantle. The studies of these samples can provide new windows for deeply investigating the genesis of mantle dunite channels, the melt reaction and migration processes within the channels and the reasons for the compositional decoupling or not between oceanic crust and mantle formed within different tectonic regimes. Studies of these samples are also helpful to better understand the giant magmatic-dynamic system under the oceanic spreading center, the differentiation of crust and mantle, and the mass cycling processes within the Earth.
Abily B, Ceuleneer G. 2013. The dunitic mantle-crust transition zone in the Oman ophiolite: Residue of melt-rock interaction, cumulates from high-MgO melts, or both? Geology, 41(1): 67-70 Agard P, Prigent C, Soret M, Dubacq B, Guillot S, Deldicque D. 2020. Slabitization: Mechanisms controlling subduction development and viscous coupling. Earth-Science Reviews, 208: 103259, doi: 10.1016/j.earscirev.2020.103259 Aharonov E, Whitehead J A, Kelemen P B, Spiegelman M. 1995. Channeling instability of upwelling melt in the mantle. Journal of Geophysical Research: Solid Earth, 100(B10): 20433-20450 Aitchison J C, Badengzhu, Davis A M, Liu J B, Luo H, Malpas J G, McDermid I R C, Wu H Y, Ziabrev S V, Zhou M F. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183(1-2): 231-244 Alard O, Luguet A, Pearson N J, Griffin W L, Lorand J P, Gannoun A, Burton K W, O’Reilly S Y. 2005. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature, 436(7053): 1005-1008 Allègre C J, Turcotte D L. 1986. Implications of a two-component marble-cake mantle. Nature, 323(6084): 123-127 An W, Hu X M, Garzanti E, BouDagher-Fadel M K, Wang J G, Sun G Y. 2014. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. GSA Bulletin, 126(11-12): 1595-1613 Anonymous. 1972. Penrose field conference on ophiolites. Geotimes, 17: 24-25 Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277-295 Bao P S, Su L, Wang J, Zhai Q G. 2014. Origin of the Zedang and Luobusa Ophiolites, Tibet. Acta Geologica Sinica-English Edition, 88(2): 669-698 Batanova V G, Belousov I A, Savelieva G N, Sobolev A V. 2011. Consequences of channelized and diffuse melt transport in supra-subduction zone mantle: Evidence from the Voykar ophiolite (Polar Urals). Journal of Petrology, 52(12): 2483-2521 Bodinier J L, Godard M. 2014. Orogenic, ophiolitic, and abyssal peridotites. In: Holland H D, Turekian K K(eds.). Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 103-167 Boudier F, Nicolas A. 1985. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth and Planetary Science Letters, 76(1-2): 84-92 Bouilhol P, Connolly J A D, Burg J P. 2011. Geological evidence and modeling of melt migration by porosity waves in the sub-arc mantle of Kohistan (Pakistan). Geology, 39(12): 1091-1094 Braun M G, Kelemen P B. 2002. Dunite distribution in the Oman Ophiolite: Implications for melt flux through porous dunite conduits. Geochemistry, Geophysics, Geosystems, 3(11): 1-21, doi: 10.1029/2001GC000289 Brongniart A. 1813. Essai d’une classification minéralogique des roches mélangées. Journal des Mines, 199: 5-48 Brunelli D, Cipriani A, Bonatti E. 2018. Thermal effects of pyroxenites on mantle melting below mid-ocean ridges. Nature Geoscience, 11(7): 520-525 Dai J G, Wang C S, Hébert R, Santosh M, Li Y L, Xu J Y. 2011. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 288(3-4): 133-148 Dai J G, Wang C S, Polat A, Santosh M, Li Y L, Ge Y K. 2013. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172-173: 1-16 Day J M D, Walker R J, Warren J M. 2017. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta, 200: 232-254 Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412 Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123(3-4): 387-411 Dygert N, Liang Y, Kelemen P B. 2016. Formation of plagioclase lherzolite and associated dunite-harzburgite-lherzolite sequences by multiple episodes of melt percolation and melt-rock reaction: An example from the Trinity ophiolite, California, USA. Journal of Petrology, 57(4): 815-838 Furnes H, de Wit M, Dilek Y. 2014. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geoscience Frontiers, 5: 571-603 Girardeau J, Mercier J C C. 1988. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): Constraints for mantle structure beneath slow-spreading ridges. Tectonophysics, 147(1-2): 33-58 Gong X H, Shi R D, Xu J F, Huang Q S, Huang X X, Su B X. 2020. “Garnet” lherzolites in the Purang ophiolite, Tibet: Evidence for exhumation of deep oceanic lithospheric mantle. Geophysical Research Letters, 47(1): e2019GL086101, doi: 10.1029/2019GL086101 González-Jiménez J M, Griffin W L, Proenza J A, Gervilla F, O’Reilly S Y, Akbulut M, Pearson N J, Arai S. 2014. Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 189: 140-158 Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, González-Jiménez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O’Reilly S Y. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655-684 Guilmette C, Smit M A, van Hinsbergen D J J, Gürer D, Corfu F, Charette B, Maffione M, Rabeau O, Savard D. 2018. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nature Geoscience, 11(9): 688-695 Hao H D, Campbell I H, Arculus R J, Perfit M R. 2021. Using precious metal probes to quantify mid-ocean ridge magmatic processes. Earth and Planetary Science Letters, 553: 116603, doi: 10.1016/j.epsl.2020.116603 Hart S R. 1993. Equilibration during mantle melting: A fractal tree model. Proceedings of the National Academy of Sciences of the United States of America, 90(24): 11914-11918 Hébert R, Huot F, Wang C S, Liu Z F. 2003. Yarlung Zangbo ophiolites (Southern Tibet) revisited: geodynamic implications from the mineral record. In: Dilek Y, Robinson P T(eds.). Ophiolites in Earth History. Geological Society, London, Special Publications, 218: 165-190 Hébert R, Bezard R, Guilmette C, Dostal J, Wang C S, Liu Z F. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Research, 22(2): 377-397 Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219-229 Huang M X, Yang J J, Powell R, Mo X X. 2014. High-pressure metamorphism of serpentinized chromitite at Luobusha (Southern Tibet). American Journal of Science, 314(1): 400-433 Ichiyama Y, Ishiwatari A, Kimura J I, Senda R, Miyamoto T. 2014. Jurassic plume-origin ophiolites in Japan: Accreted fragments of oceanic plateaus. Contributions to Mineralogy and Petrology, 167(1): 1019, doi: 10.1007/s00410-014-1019-1 Ishikawa T, Nagaishi K, Umino S. 2002. Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology, 30(10): 899-902 Iwamori H. 1993. A model for disequilibrium mantle melting incorporating melt transport by porous and channel flows. Nature, 366(6457): 734-737 Johansen S E, Panzner M, Mittet R, Amundsen H E F, Lim A, Vik E, Landro M, Arntsen B. 2019. Deep electrical imaging of the ultraslow-spreading Mohns Ridge. Nature, 567(7748): 379-383 Jull M, Kelemen P B, Sims K. 2002. Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochimica et Cosmochimica Acta, 66(23): 4133-4148 Katz R F, Spiegelman M, Holtzman B. 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature, 442(7103): 676-679 Katz R F, Weatherley S M. 2012. Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges. Earth and Planetary Science Letters, 335-336: 226-237 Kelemen P B, Shimizu N, Salters V J M. 1995a. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375(6534): 747-753 Kelemen P B, Whitehead J A, Aharonov E, Jordahl K A. 1995b. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. Journal of Geophysical Research: Solid Earth, 100(B1): 475-496 Kelemen P B, Hirth G, Shimizu N, Spiegelman M, Dick H J. 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 355(1723): 283-318 Kelemen P B, Braun M, Hirth G. 2000. Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: Observations from the Ingalls and Oman ophiolites. Geochemistry, Geophysics, Geosystems, 1(7): 1005, doi: 10.1029/1999GC000012 Key K, Constable S, Liu L J, Pommier A. 2013. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature, 495(7442): 499-502 Kimura J I, Sano S. 2012. Reactive melt flow as the origin of residual mantle lithologies and basalt chemistries in Mid-Ocean Ridges: Implications from the Red Hills peridotite, New Zealand. Journal of Petrology, 53(8): 1637-1671 Kinzler R J, Grove T L. 1992. Primary magmas of mid-ocean ridge basalts 2. Applications. Journal of Geophysical Research: Solid Earth, 97(B5): 6907-6926 Kohlstedt D L, Holtzman B K. 2009. Shearing melt out of the Earth: An experimentalist’s perspective on the influence of deformation on melt extraction. Annual Review of Earth and Planetary Sciences, 37: 561-593 Koppers A A P, Coggon R. (2020-10-28). Exploring Earth by Scientific Ocean Drilling: 2050 Science Framework. 1-124. https://doi.org/10.6075/J0W66J9H Kubo K. 2002. Dunite formation processes in highly depleted peridotite: Case study of the Iwanaidake peridotite, Hokkaido, Japan. Journal of Petrology, 43(3): 423-448 Lambart S, Laporte D, Schiano P. 2009. An experimental study of focused magma transport and basalt-peridotite interactions beneath mid-ocean ridges: Implications for the generation of primitive MORB compositions. Contributions to Mineralogy and Petrology, 157(4): 429-451 Lambart S, Koornneef J M, Millet M A, Davies G R, Cook M, Lissenberg C J. 2019. Highly heterogeneous depleted mantle recorded in the lower oceanic crust. Nature Geoscience, 12(6): 482-486 Le Mée L, Girardeau J, Monnier C. 2004. Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge. Nature, 432(7014): 167-172 Liang Y, Parmentier E M. 2010. A two-porosity double lithology model for partial melting, melt transport and melt-rock reaction in the mantle: Mass conservation equations and trace element transport. Journal of Petrology, 51(1-2): 125-152 Liang Y, Schiemenz A, Hesse M A, Parmentier E M, Hesthaven J S. 2010. High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite. Geophysical Research Letters, 37(15): L15306, doi: 10.1029/2010GL044162 Liang Y, Schiemenz A, Hesse M A, Parmentier E M. 2011. Waves, channels, and the preservation of chemical heterogeneities during melt migration in the mantle. Geophysical Research Letters, 38(20): L20308, doi: 10.1029/2011GL049034 Liang Y. 2020. Trace element fractionation and isotope ratio variation during melting of a spatially distributed and lithologically heterogeneous mantle. Earth and Planetary Science Letters, 552: 116594, doi: 10.1016/j.epsl.2020.116594 Lissenberg C J, MacLeod C J, Bennett E N. 2019. Consequences of a crystal mush-dominated magma plumbing system: A mid-ocean ridge perspective. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2139): 20180014, doi: 10.1098/rsta.2018.0014 Liu B D, Liang Y. 2017. The prevalence of kilometer-scale heterogeneity in the source region of MORB upper mantle. Science Advances, 3(11): e1701872, doi: 10.1126/sciadv.1701872 Liu B D, Liang Y. 2019. Importance of permeability and deep channel network on the distribution of melt, fractionation of REE in abyssal peridotites, and U-series disequilibria in basalts beneath mid-ocean ridges: A numerical study using a 2D double-porosity model. Earth and Planetary Science Letters, 528: 115788, doi: 10.1016/j.epsl.2019.115788 Liu C Z, Snow J E, Hellebrand E, Brügmann G, von der Handt A, Büchl A, Hofmann A W. 2008. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature, 452(7185): 311-316 Liu C Z, Zhang C, Yang L Y, Zhang L L, Ji W Q, Wu F Y. 2014. Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 205: 127-141 Liu T, Wu F Y, Liu C Z, Tribuzio R, Ji W B, Zhang C, Xu Y, Zhang W Q. 2018. Variably evolved gabbroic intrusions within the Xigaze ophiolite (Tibet): New insights into the origin of ophiolite diversity. Contributions to Mineralogy and Petrology, 173(11): 91, doi: 10.1007/s00410-018-1518-6 Luguet A, Pearson D G. 2019. Dating mantle peridotites using Re-Os isotopes: The complex message from whole rocks, base metal sulfides, and platinum group minerals. American Mineralogist, 104(2): 165-189 MacLeod C J, Lissenberg C J, Bibby L E. 2013. “Moist MORB” axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology, 41(4): 459-462 Maffione M, van Hinsbergen D J J, Koornneef L M T, Guilmette C, Hodges K, Borneman N, Huang W T, Ding L, Kapp P. 2015. Forearc hyperextension dismembered the south Tibetan ophiolites. Geology, 43(6): 475-478 Malpas J, Zhou M F, Robinson P T, Reynolds P H. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. In: Dilek T Y, Robinson P T(eds.). Ophiolites in Earth History. Geological Society, London, Special Publications, 218: 191-206 Moores E M, Jackson E D. 1974. Ophiolites and oceanic crust. Nature, 250(5462): 136-139 Morgan Z, Liang Y. 2003. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters, 214(1-2): 59-74 Morgan Z, Liang Y, Kelemen P. 2008. Significance of the concentration gradients associated with dunite bodies in the Josephine and Trinity ophiolites. Geochemistry, Geophysics, Geosystems, 9(7): Q07025, doi: 10.1029/2008GC001954 Nicolas A, Girardeau J, Marcoux J, Dupre B, Wang X B, Cao Y G, Zheng H X, Xiao X C. 1981. The Xigaze ophiolite (Tibet): A peculiar oceanic lithosphere. Nature, 294(5840): 414-417 Nicolas A. 1986. A melt extraction model based on structural studies in mantle peridotites. Journal of Petrology, 27(4): 999-1022 Nicolas A, Boudier F, Ildefonse B, Ball E. 2000. Accretion of Oman and United Arab Emirates ophiolite-Discussion of a new structural map. Marine Geophysical Researches, 21(3): 147-180 Niu Y L. 1997. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. Journal of Petrology, 38(8): 1047-1074 Niu Y L. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423-2458 O’Driscoll B, González-Jiménez J M. 2016. Petrogenesis of the platinum-group minerals. Reviews in Mineralogy and Geochemistry, 81(1): 489-578 Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar B P, Howells M F(eds.). Marginal Basin Geology. Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins. Geological Society, London, Special Publications, 16: 77-94 Piccardo G B. 2008. The Jurassic Ligurian Tethys, a fossil ultra-slow spreading ocean: The mantle perspective. In: Coltorti M, Gregoire M(eds.). Metasomatism in Oceanic and Continental Lithospheric Mantle. Geological Society, London, Special Publications, 293: 11-34 Plank T, Langmuir C H. 1992. Effects of the melting regime on the composition of the oceanic crust. Journal of Geophysical Research: Solid Earth, 97(B13): 19749-19770 Quick J E. 1982. The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California. Contributions to Mineralogy and Petrology, 78(4): 413-422 Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, 148: 247-261 Rospabé M, Ceuleneer G, Benoit M, Abily B, Pinet P. 2017. Origin of the dunitic mantle-crust transition zone in the Oman ophiolite: The interplay between percolating magmas and high-temperature hydrous fluids. Geology, 45(5): 471-474 Rubin K H, Sinton J M, Maclennan J, Hellebrand E. 2009. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nature Geoscience, 2(5): 321-328 Sanfilippo A, Salters V, Tribuzio R, Zanetti A. 2019. Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism. Earth and Planetary Science Letters, 511: 89-98 Schlindwein V, Schmid F. 2016. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature, 535(7611): 276-279 Shi R D, Griffin W L, O’Reilly S Y, Huang Q S, Zhang X R, Liu D L, Zhi X C, Xia Q X, Ding L. 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21(1): 194-206 Sinton J M, Detrick R S. 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research: Solid Earth, 97(B1): 197-216 Spiegelman M, Reynolds J R. 1999. Combined dynamic and geochemical evidence for convergent melt flow beneath the East Pacific Rise. Nature, 402(6759): 282-285 Spiegelman M, Kelemen P B. 2003. Extreme chemical variability as a consequence of channelized melt transport. Geochemistry, Geophysics, Geosystems, 4(7): 1055, doi: 10.1029/2002GC000336 Steinmann G. 1927. Die ophiolitischen Zonen in den Mediterranean Kettengebirgen. In: 14th International Geological Congress in Madrid, 2: 637-667 Stolper E. 1980. A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis. Contributions to Mineralogy and Petrology, 74(1): 13-27 Stracke A, Genske F, Berndt J, Koornneef J M. 2019. Ubiquitous ultra-depleted domains in Earth’s mantle. Nature Geoscience, 12(10): 851-855 Su B X, Zhou M F, Robinson P T. 2016. Extremely large fractionation of Li isotopes in a chromitite-bearing mantle sequence. Scientific Reports, 6(1): 22370, doi: 10.1038/srep22370 Suhr G. 1999. Melt migration under oceanic ridges: Inferences from reactive transport modelling of upper mantle hosted dunites. Journal of Petrology, 40(4): 575-599 Suhr G, Hellebrand E, Snow J E, Seck H A, Hofmann A W. 2003. Significance of large, refractory dunite bodies in the upper mantle of the Bay of Islands Ophiolite. Geochemistry, Geophysics, Geosystems, 4(3): 8605, doi: 10.1029/2001GC000277 The MELT Seismic Team. 1998. Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science, 280(5367): 1215-1218 White W M, Klein E M. 2014. Composition of the oceanic crust. In: Holland H D, Turekian K K(eds.). Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 457-496 Xia B, Yu H X, Chen G W, Qi L, Zhao T P, Zhou M F. 2003. Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet. Geochemical Journal, 37(3): 311-324 Xiong F H, Yang J S, Robinson P T, Xu X Z, Liu Z, Li Y, Li J Y, Chen S Y. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2): 525-542 Xiong F H, Yang J S, Robinson P T, Xu X Z, Liu Z, Zhou W D, Feng G Y, Xu J F, Li J, Niu X L. 2017c. High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Reviews, 80: 1020-1041 Xiong F H, Yang J S, Schertl H P, Liu Z, Xu X Z. 2020a. Multistage origin of dunite in the Purang ophiolite, southern Tibet, documented by composition, exsolution and Li isotope characteristics of constituent minerals. European Journal of Mineralogy, 32(1): 187-207 Xiong Q, Griffin W L, Zheng J P, O’Reilly S Y, Pearson N J, Xu B, Belousova E A. 2016. Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 438: 57-65 Xiong Q, Griffin W L, Zheng J P, Pearson N J, O'Reilly S Y. 2017a. Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochemistry, Geophysics, Geosystems, 18(3): 1189-1213 Xiong Q, Henry H, Griffin W L, Zheng J P, Satsukawa T, Pearson N J, O’Reilly S Y. 2017b. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6): 45 Xiong Q, Xu Y, González-Jiméne, J M, Liu J G, Alard O, Zheng J P, Griffin W L, O’Reilly S Y. 2020b. Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 531: 115969, doi: 10.1016/j.epsl.2019.115969 Xu X Z, Yang J S, Ba D Z, Guo G L, Robinson P T, Li J Y. 2011. Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42(4): 553-568 Yang J S, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10(2): 127-130 Zhang C, Liu C Z, Wu F Y, Ji W B, Liu T, Xu Y. 2017. Ultra-refractory mantle domains in the Luqu ophiolite (Tibet): Petrology and tectonic setting. Lithos, 286-287: 252-263 Zhang C, Liu C Z, Xu Y, Ji W B, Wang J M, Wu F Y, Liu T, Zhang Z Y, Zhang W Q. 2019c. Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth and Planetary Science Letters, 523: 115707 Zhang P F, Zhou M F, Robinson P T, Pearce J A, Malpas J, Liu Q Y, Xia X P. 2019a. Evolution of nascent mantle wedges during subduction initiation: Li-O isotopic evidence from the Luobusa ophiolite, Tibet. Geochimica et Cosmochimica Acta, 245: 35-58 Zhang P F, Zhou M F, Liu Q Y, Malpas J, Robinson P T, He Y S. 2019b. Modification of mantle rocks by plastic flow below spreading centers: Fe isotopic and fabric evidence from the Luobusa ophiolite, Tibet. Geochimica et Cosmochimica Acta, 253: 84-110 Zheng H, Huang Q T, Kapsiotis A, Lenaz D, Velicogna M, Xu C, Cheng C, Xia B, Liu W L, Xiao Y, Yang P. 2019. Coexistence of MORB- and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-type magmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle. GSA Bulletin, 131(7-8): 1276-1294 Zhou M F, Robinson P T, Malpas J, Li Z J. 1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3-21 Zhou M F, Robinson P T, Malpas J, Edwards S J, Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615-639 Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262-283 白文吉, 方青松, 张仲明, 颜秉刚, 周美付. 1999. 西藏雅鲁藏布江蛇绿岩带罗布莎地幔橄榄岩的成因. 岩石矿物学杂志, 18(3): 193-206 王希斌, 鲍佩声, 邓万明. 1987. 西藏蛇绿岩. 北京: 地质出版社, 1-336 吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩:事实与臆想. 岩石学报, 30(2): 293-325 熊发挥, 杨经绥, 高健, 来盛民, 陈艳虹, 张岚. 2016. 西藏雅鲁藏布江缝合带东段泽当豆荚状铬铁矿特征. 岩石学报, 32(12): 3635-3648 郑建平, 熊庆, 赵伊, 李文博. 2019. 俯冲带橄榄岩及其记录的壳幔相互作用. 中国科学: 地球科学, 49(7): 1037-1058