Direct Geolocal Records of Ancient Environments in the Evaporite Basin: Evidences from Fluid Inclusions in Halite
MENG Fan-wei1, ZHANG Zhi-li2, ZHUO Qin-gong3,4, NI Pei5
1. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China;
2. Petroleum Exploration and Development Research Institute, SINOPEC, Beijing 100083, China;
3. Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China;
4. PetroChina Key Laboratory of Basin Structure and Hydrocarbon Accummulation, Beijing 100083, China;
5. School of Earth Science and Engineering, Nanjing University, Nanjing 201193, China
Abstract:Evaporite is a treasure chest for reserving the information of ancient environments. Halite is the most widely distributed evaporitic mineral in the completely dried evaporitic basin. Halite has good closure and will be consolidated to halite rock with poreless and incompressible features in a shallow buried state. Fluid inclusions in halite, gypsum and glauberite, and mirabilite contain fluids (liquid or/and gases) which were captured during their crystalizations in the evaporation process of ancient marine lagoon or continental salt lake. Therefore, primary fluid inclusions in halite can record informations of temperature, chemical composition of the ocean, salt lake, and composition of the atmosphere in geological times directly, and can provide excellent direct records of paleoenvironments. Homogenization temperatures of primary fluid inclusions in halite can represent the brine temperature during halite crystalization. In shallow brine, the highest homogenization temperatures of fluid inclusions in halite can approximately represent the air temperature. The compositions of brines in primary fluid inclusions in halite can respectively represent those of seawater/salt lake water during evaporation process, and then can be used to infer the composition of seawater/salt lake water at that time. The halite funnel crystals, which were formed and floated in the top part of the brine, can capture ancient atmosphere as gas bubbles in primary fluid inclusions of the halite, indicating that primary fluid inclusions in halite can preserve original information of the paleo-atmesphere. Therefore, primary fluid inclusions in halite can provide accurate, direct and quantitive geological records that are not available by other traditional geochemical means, and will become the focus of paleoenvironmental studies in the future.
孟凡巍, 张智礼, 卓勤功, 倪培. 蒸发岩盆地古环境的直接记录:来自石盐流体包裹体的证据[J]. 矿物岩石地球化学通报, 2018, 37(3): 451-460.
MENG Fan-wei, ZHANG Zhi-li, ZHUO Qin-gong, NI Pei. Direct Geolocal Records of Ancient Environments in the Evaporite Basin: Evidences from Fluid Inclusions in Halite. Acta Metallurgica Sinica, 2018, 37(3): 451-460.
Siemann M G, Ellendorf B. 2001. The composition of gases in fluid inclusions of late Permian(Zechstein)marine evaporites in Northern Germany. Chemical Geology, 173(1-3):31-44
Kovalevych V M, Paul J, Peryt T M. 2009. Fluid inclusions in halite from the Röt (Lower Triassic) salt deposit in Central Germany:Evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporites, 24(1):45-57
Warren J K. 2006. Evaporites:Sediments, resources and hydrocarbons. Berlin, Heidelberg:Springer.
Casas E, Lowenstein T K. 1989. Diagenesis of saline pan halite; Comparison of petrographic features of modern, Quaternary and Permian Halites. Journal of Sedimentary Research, 59(5):724-739
Pagani M, Zachos J C, Freeman K H, Tipple B, Bohaty S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 308(5734):600-603
Petrychenko O Y, Peryt T M, Chechel E I. 2005. Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chemical Geology, 219(1-4):149-161
Robert F, Chaussidon M. 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443(7114):969-972
Kovalevych V M, Peryt T M, Zang W L, Vovnyuk S V. 2006a. Composition of brines in halite-hosted fluid inclusions in the Upper Ordovician, Canning Basin, Western Australia:New data on seawater chemistry. Terra Nova, 18(2):95-103
Kovalevych V M, Marshall T, Peryt T M, Petrychenko O Y, Zhukova S A. 2006b. Chemical composition of seawater in Neoproterozoic:Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144, (1-2):39-51
Yang C H, Li Y P, Chen F, Yin X Y. 2006. Geological feasibility research report of energy underground storage of Yunying salt mine in Hubei Province. Institute of Rock and Soil Mechanics. CAS
魏东岩. 1999. 中国石盐矿床之分类. 化工矿产地质, 21(4):201-208
Barker C E, Goldstein R H. 1990. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology, 18(10):1003-1006
Blamey N J F, Parnell J, McMahon S M, Mark D F, Tomkinson T, Lee M, Shivak J, Izawa M R M, Banerjee N R, Flemming R L. 2015. Evidence for methane in Martian meteorites. Nature Communications, 6:7399
Holt N M, García-Veigas J, Lowenstein T K, Giles P S, Williams-Stroud S. 2014. The major-ion composition of Carboniferous seawater. Geochimica et Cosmochimica Acta, 134:317-334
Hopfenberg H B, Witchey L C, Poinar Jr GO. 1988. Is the air in amber ancient? Science, 241(4866):717-718
Timofeeff M N, Lowenstein T K, Blackburn W H. 2000. ESEM-EDS:An improved technique for major element chemical analysis of fluid inclusions. Chemical Geology, 164(3-4):171-181
Blamey N J F, Brand U, Parnell J, Spear N, Christophe L, Benison K, Meng F W, Ni P. 2016. Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology, 44(8):651-654
Hardie L A, Lowenstein T K, Spencer R J. 1985. The problem of distinguishing between primary and secondary features in evaporates. In:Schreiber B C, Harber H I, eds. Sixth International Symposium on Salt. Alexandia, Virginia, USA:The Salt Institute, 11-39
Lowenstein T K, Li J R, Brown C B. 1998. Paleotemperatures from fluid inclusions in halite:Method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3-4):223-245
McCulloch D S. 1959. Vacuole disappearance temperatures of laboratory-grown hopper halite crystals. Journal of Geophysical Research, 64(7):849-854
Roberts S M, Spencer R J. 1995. Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19):3929-3942
Sandberg P A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305(5929):19-22
Satterfield C L, Lowenstein T K, Vreeland R H, Rosenzweig W D. 2005. Paleobrine temperatures, chemistries, and paleoenvironments of Silurian salina formation F-1 Salt, Michigan basin, U.S.A., from petrography and fluid inclusions in Halite. Journal of Sedimentary Research, 75(4):534-546
Timofeeff M N, Lowenstein T K, Da Silva M A M, Harris N B. 2006. Secular variation in the major-ion chemistry of seawater:Evidence from fluid inclusions in Cretaceous halites. Geochimica et Cosmochimica Acta, 70(8):1977-1994
Zambito J J, Benison K C. 2013. Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5):587-590
Benison K C, Goldstein R H. 1999. Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1-4):113-132
Brennan S T, LowensteinT K, Horita J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32(6):473-476
Coutinho C C, Fonseca R N, Mansure J J C, Borojevic R. 2003. Early steps in the evolution of multicellularity:Deep structural and functional homologies among homeobox genes in sponges and higher metazoans. Mechanisms of Development, 120:429-440
Dellwig I F. 1955. Origin of the salina salt of michigan. Journal of Sedimentary Petrology, 25(2):83-110
Hildenbrand A, Urai J L. 2003. Investigation of the morphology of pore space in mudstones-first results. Marine and Petroleum Geology, 20(10):1185-1200
Ingram G M, Urai J L. 1999. Top-seal leakage through faults and fractures:The role of mudrock properties. In:Alpin AC, Fleet AJ, Macquaker JHS eds. Muds and Mudstones:Physical and Fluid Flow Properties. Geological Society, London, Special Publications, 158:125-135
Kempe S, Kaz'mierczak J. 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bulletin de la Institut Oceanographique (Monaco), 13:61-117
Khmelevska O, Kovalevych V, Peryt T M. 2000. Changes of seawater composition in the Triassic-Jurassic time as recorded by fluid inclusions in halite. Journal of Geochemical Exploration, 69-70:83-86
Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean:Implications for the course of microbial evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2):53-69
Knoll A H, Carroll S B. 1999. Early animal evolution:Emerging views from comparative biology and geology. Science, 284(5423):2129-2137
Lowenstein T K, Timofeeff M N, Brennan S T, Hardie L A, Demicco R V. 2001. Oscillations in phanerozoic seawater chemistry:Evidence from fluid inclusions. Science, 294(5544):1086-1088
Meng F W, Ni P, Schiffbauer J D, Yuan X L, Zhou C M, Wang Y G, Xia M L. 2011. Ediacaran seawater temperature:Evidence from inclusions of Sinian halite. Precambrian Research, 184(1-4):63-69
Meng F W, Ni P, Yuan X L, Zhou C M, Yang C H, Li Y P. 2013. Choosing the best ancient analogue for projected future temperatures:A case using data from fluid inclusions of middle-late Eocene halites. Journal of Asian Earth Sciences, 67-68:46-50
Meng F W, Galamay A R, Ni P, Yang C H, Li Y P, Zhuo Q G. 2014. The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. Journal of Asian Earth Sciences, 85:97-105
Meng F W, Zhang Y S, Galamay A R, Bukowski K, Ni P, Xing E Y, Ji L M. 2018. Ordovician seawater composition:Evidence from fluid inclusions in halite. Geological Quarterly, 62 (2):344-352
Timofeef M N, Lowenstein T K, Brennan S T, Demicco R V, Zimmermann H, Horita J, Von Borstel L E. 2001. Evaluating seawater chemistry from fluid inclusions in halite:Examples from modern marine and nonmarine environments. Geochimica et Cosmochimica Acta, 65(14):2293-2300
Zhang X Y, Meng F W, Li W X, Tang Q L, Ni P. 2016. Reconstruction of late cretaceous coastal paleotemperature from halite deposits of the late cretaceous nongbok formation (Khorat Plateau, Laos). Palaeoworld, 25(3):425-430
Goldstein R H, Reynolds T J. 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course, 31
Krüger Y, García-Ruiz J M, Canals À, Marti D, Frenz M, Van Driessche A E S. 2013. Determining gypsum growth temperatures using monophase fluid inclusions-Application to the giant gypsum crystals of Naica, Mexico. Geology, 41(2):119-122
Meng F W, Zhang Z L, Schiffbauer J D, Zhuo Q G, Zhao M J, Ni P, Liu W H, Ahsan N, Rehman S U. 2017a. The Yudomski event and subsequent decline:New evidence from δ34S data of lower and middle Cambrian evaporites in the Tarim Basin, western China. Carbonates and Evaporites, doi:10.1007/s13146-017-0407-9
Warren J K. 1999. Evaporites:Their evolution and economics. Oxford, UK:Wiley-Blackwell
Berner E K, Berner R A. 1987. The global water cycle, Geochemistry and environment. New Jersey:Prentice-Hall, Englewood Cliffs, 396
Berner R A, Landis G P. 1988. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air. Science, 239(4846):1406-1409
Cloud P. 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology, 2(4):351-387
Dal Corso J, Preto N, Kustatscher E, Mietto P, Roghi G, Jenkyns H C. 2011. Carbon-isotope variability of Triassic amber, as compared with wood and leaves (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 302(3-4):187-193
Einsele G. 2000. Sedimentary Basins. Evolution, Facies and Sediment Budget. Berlin:Springer-Verlag,
Kovalevych V M, Peryt T M, Petrichenko O I. 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. The Journal of Geology, 106(6):695-712
Meng F W, Zhang Z L, Yan X Q, Ni P, Liu W H, Fan F, Xie G W. 2017b. Stromatolites in Middle Ordovician carbonate-evaporite sequences and their carbon and sulfur isotopes stratigraphy, Ordos Basin, northwestern China. Carbonates and Evaporites, doi:10.1007/s13146-017-0367-0
Popp T, Kern H, Schulze O. 2001. Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. Journal of Geophysical Research:Solid Earth, 106(B3):4061-4078
Zhao Y J, Zhang H, Liu C L, Liu B K, Ma L C, Wang L C. 2014. Late Eocene to early Oligocene quantitative paleotemperature record:Evidence from continental halite fluid inclusions. Scientific Reports, 4:5776
Goldstein R H. 2001. Clues from fluid inclusions. Science, 294(5544):1009-1011
Lowenstein T K, Hardie L A. 1985. Criteria for the recognition of salt pan evaporites. Sedimentology, 32(5):627-644
McCaffrey M A, Lazar B, Holland H D. 1987. The evaporation path of seawater and the coprecipitation of Br-and K+ with halite. Journal of Sedimentary Petrology, 57(5):928-938
Murray R C. 1964. Origin and Diagenesis of gypsum and anhydrite. Journal of Sedimentary Research, 34(3):512-523
Roedder E. 1984. The fluids in salt. American Mineralogist, 69(5):413-439
Shepherd T J, Chenery S R. 1995. Laser ablation ICP-MS elemental analysis of individual fluid inclusions:An evaluation study. Geochimica et Cosmochimica Acta, 59(19):3997-4007
Vreeland R H, Rosenzweig W D, Powers D W. 2000. Isolation of a 250 Million-year-halotolerant bacterium from a primary salt crystal. Nature, 407(6806):897-900
Cerling T E. 1989. Does the gas content of amber reveal the composition of palaeoatmospheres? Nature, 339(6227):695-696
Kovalevych V M, Peryt T M, Beer W, Geluk M, Ha?as S. 2002. Geochemistry of Early Triassic seawater as indicated by study of the Röt halite in the Netherlands, Germany, and Poland. Chemical Geology, 182(2-4):549-563
Parry W T, Blamey N J F. 2010. Fault fluid composition from fluid inclusion measurements, Laramide age Uinta thrust fault, Utah. Chemical Geology, 278(1-2):105-119
Zhuo Q G, Meng F W, Song Y, Yang H J, Li Y, Ni P. 2014. Hydrocarbon migration through salt:Evidence from Kelasu tectonic zone of Kuqa foreland basin in China. Carbonates and Evaporites, 29(3):291-297